电子电气工程与控制

基于扩展状态观测器的电动负载模拟器反演滑模控制

  • 代明光 ,
  • 齐蓉
展开
  • 西北工业大学 自动化学院, 西安 710129

收稿日期: 2019-11-26

  修回日期: 2020-01-02

  网络出版日期: 2020-02-21

基金资助

国家自然科学基金(51777170);航空科学基金(20162853026)

Backstepping sliding mode control of electric dynamic load simulator based on extended state observer

  • DAI Mingguang ,
  • QI Rong
Expand
  • School of Automation, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2019-11-26

  Revised date: 2020-01-02

  Online published: 2020-02-21

Supported by

National Natural Science Foundation of China (51777170);Aeronautical Science Foundation of China (20162853026)

摘要

针对电动负载模拟器中存在的强位置扰动、摩擦、间隙非线性以及参数时变等不确定干扰,提出了一种基于扩展状态观测器的反演滑模控制策略。基于反演设计的思想,将电动负载模拟器分解为负载力矩子系统和永磁同步电机驱动子系统。对负载力矩子系统,利用带有滤波器的扩展状态观测器,消除量测噪声对系统的影响,同时估计出系统中存在的干扰,而后采用比例趋近滑模控制律,得出负载力矩子系统所对应的虚拟控制量;对永磁同步电机驱动子系统,利用常规扩展状态观测器估计出子系统中的复合扰动,采用非奇异终端滑模控制律,消除观测误差以及干扰对系统的影响,并得出系统所需的最终控制量。最后,利用李雅普诺夫方法证明了电动负载模拟器的稳定性,并通过实验验证了所提方法的有效性。

本文引用格式

代明光 , 齐蓉 . 基于扩展状态观测器的电动负载模拟器反演滑模控制[J]. 航空学报, 2020 , 41(5) : 323683 -323683 . DOI: 10.7527/S1000-6893.2020.23683

Abstract

A backstepping sliding mode control strategy based on an extended state observer is proposed to solve the problem of uncertain disturbance such as strong position disturbance, friction nonlinearity, backlash nonlinearity and parameter time-varying in the electric dynamic load simulator. Based on the idea of back-stepping design strategy, the electric dynamic load simulator is decomposed into the loading torque subsystem and the permanent magnet synchronous motor drive subsystem. An extended state observer with a filter is then applied to the loading torque subsystem to eliminate the influence of measurement noise on the system and meanwhile estimate the external disturbance in the system. Next, the virtual control quantity corresponding to the loading torque subsystem is obtained by using the proportional approaching sliding mode control law. For the permanent magnet synchronous motor drive subsystem, the conventional extended state observer is used to estimate the complex disturbance in the subsystem, and the non-singular terminal sliding mode control law is adopted to eliminate the observation error and the influence of external disturbance on the system, obtaining the final control quantity required by the system. The stability of the electric dynamic load simulator is proved by Lyapunov method and the effectiveness of the proposed method is verified by the experiments.

参考文献

[1] BENNETT J W, MECROW B C, ATKINSON D J, et al. Fault-tolerant electric drive for an aircraft nose wheel steering actuator[J]. IET Electrical Systems in Transportation, 2010, 1(3):117-125.
[2] ZHANG M, LIU C, WU X, et al. All-electric aircraft nose wheel steering system with two worm gears[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(1):170-180.
[3] 关永亮,侯玉秀,贾宏光,等. 无人机地面运动的动力学建模及仿真[J]. 兵工学报, 2014, 35(7):1021-1026. GUAN Y L, HOU Y X, JIA H G, et al. Dynamic modeling and simulation of UAV ground maneuvers[J]. Acta Armamentarii, 2014, 35(7):1021-1026(in Chinese).
[4] 赵喆,贾玉红,田剑波. 基于模糊控制的前轮转弯控制律设计[J]. 振动与冲击, 2018, 37(4):128-135. ZHAO Z, JIA Y H, TIAN J B. A design of a nose wheel steering control law based on fuzzy control[J]. Journal of Vibration and Shock, 2018, 37(4):128-135(in Chinese).
[5] 魏琼,吴帅,焦宗夏,等. 高速运动舵机的气动伺服加载特性研究[J]. 航空学报, 2013, 34(8):1778-1785. WEI Q, WU S, JIAO Z X, et al. Study on the pneumatic servo loading characteristics of high-speed motion actuators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1778-1785(in Chinese).
[6] 王超,侯远龙,王力,等. 炮控系统电动负载模拟器性能影响因素分析[J]. 电机与控制学报, 2016, 20(12):74-81. WANG C, HOU Y L, WANG L, et al. Influence analysis on electric load simulator for the gun control system[J]. Electric Machines and Control, 2016, 20(12):74-81(in Chinese).
[7] YANG B, BAO R, HAN H T. Robust hybrid control based on PD and novel CMAC with improved architecture and learning scheme for electric load simulator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10):5271-5279.
[8] WANG L S, WANG M Y, GUO B, et al. Analysis and design of a speed controller for electric load simulators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(12):7413-7422.
[9] ZHANG M, YANG B. A naive method of applying fuzzy logic to CMAC in electric load simulator[J]. Transactions of the Institute of Measurement & Control, 2017,39(10):1590-1599.
[10] 吕帅帅,林辉. 电动加载系统分数阶迭代学习复合控制[J]. 北京航空航天大学学报, 2016, 42(9):1944-1951. LYU S S, LIN H. Composite control for electric dynamic loading system based on fractional order iterative learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9):1944-1951(in Chinese).
[11] 王乐三,王明彦,郭犇. 基于比例谐振控制的电动负载模拟器高频率加载控制策略及其稳定性分析[J]. 中国电机工程学报, 2018, 38(14):4262-4270. WANG L S, WANG M Y, GUO B. A high frequency loading control strategy based on proportional resonant control and stability analysis for electric load simulators[J]. Proceedings of the CSEE, 2018, 38(14):4262-4270(in Chinese).
[12] 齐蓉,林辉,陈明. 被动式电动加载系统多余力的研究[J]. 控制与决策, 2006, 21(2):225-228. QI R, LIN H, CHEN M. Research on surplus torque in passive electric loading system[J]. Control and Decision, 2006, 21(2):225-228(in Chinese).
[13] LI C C, LI Y F, WANG G L. H-infinity output tracking control of Electric-motor-driven aerodynamic Load simulator with external active motion disturbance and nonlinearity[J]. Aerospace Science and Technology, 2018, 82(83):334-349.
[14] WANG L S, WANG M Y, GUO B, et al. A loading control strategy for electric load simulators based on proportional resonant control[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6):4608-4618.
[15] 刘晓琳,李卓. 飞机舵机电动加载系统多余力矩抑制方法[J]. 系统工程与电子技术, 2019, 41(6):1366-1373. LIU X L, LI Z. Method to restrain extra torque of aircraft rudder electric loading system[J]. Systems Engineering and Electronics,2019, 41(6):1366-1373(in Chinese).
[16] WANG X J, WANG S P, YAO B. Adaptive robust torque control of electric load simulator with strong position coupling disturbance[J]. International Journal of Control Automation & Systems, 2013, 11(2):325-332.
[17] WANG X J, WANG S P,ZHAO P. Adaptive fuzzy torque control of passive torque servo systems based on small gain theorem and input-to-state stability[J]. Chinese Journal of Aeronautics, 2012, 25(6):906-916.
[18] KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlinear and adaptive control design[M]. New York:John Wiley & Sons, 1995.
[19] 马广富,朱庆华,王鹏宇,等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6):321763. MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):321763(in Chinese).
[20] LI Y F, YANG B, ZHENG T X, et al. Extended state observer based double loop integral sliding mode control of electronic throttle valve[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2501-2510.
[21] 董朝阳,程昊宇,王青. 基于自抗扰的反步滑模制导控制一体化设计[J]. 系统工程与电子技术, 2015, 37(7):1604-1610. DONG C Y, CHENG H Y, WANG Q. Backstepping sliding mode control for integrated guidance and control design based on active disturbance rejection[J]. Systems Engineering and Electronics, 2015, 37(7):1604-1610(in Chinese).
[22] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[23] GAO Z Q. Active disturbance rejection control:a paradigm shift in feedback control system design[C]//American Control Conference. Piscataway:IEEE Press, 2006:2399-2405.
[24] 康忠健,陈醒,崔朝丽,等. 基于ESO与终端滑模控制的直流配电网母线电压控制[J]. 中国电机工程学报, 2018, 38(11):3235-3243. KANG Z J, CHEN X, CUI Z L, et al. Bus voltage control method of DC distribution network based on ESO and terminal sliding mode control[J]. Proceedings of The Chinese Society for Electrical Engineering, 2018, 38(11):3235-3243(in Chinese).
[25] 林飞,孙湖,郑琼林,等. 用于带有量测噪声系统的新型扩张状态观测器[J]. 控制理论与应用, 2005, 22(6):995-998. LIN F, SUN H, ZHENG Q L, et al. Novel extended state observer for uncertain system with measurement noise[J]. Control Theory & Applications, 2005, 22(6):995-998(in Chinese).
[26] CAI H X, HUANG Y M, DU J F, et al. Iterative learning control with extended state observer for telescope system[J]. Mathematical Problems in Engineering, 2015(4-5):1-8.
[27] 许波,朱熀秋. 自适应非奇异终端滑模控制及其在BPMSM中的应用[J]. 控制与决策, 2014, 29(5):833-837. XU B, ZHU H Q. Adaptive nonsingular terminal sliding model control and its application to BPMSM[J]. Control and Decision, 2014, 29(5):833-837(in Chinese).
文章导航

/