[1] BENNETT J W, MECROW B C, ATKINSON D J, et al. Fault-tolerant electric drive for an aircraft nose wheel steering actuator[J]. IET Electrical Systems in Transportation, 2010, 1(3):117-125.
[2] ZHANG M, LIU C, WU X, et al. All-electric aircraft nose wheel steering system with two worm gears[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(1):170-180.
[3] 关永亮,侯玉秀,贾宏光,等. 无人机地面运动的动力学建模及仿真[J]. 兵工学报, 2014, 35(7):1021-1026. GUAN Y L, HOU Y X, JIA H G, et al. Dynamic modeling and simulation of UAV ground maneuvers[J]. Acta Armamentarii, 2014, 35(7):1021-1026(in Chinese).
[4] 赵喆,贾玉红,田剑波. 基于模糊控制的前轮转弯控制律设计[J]. 振动与冲击, 2018, 37(4):128-135. ZHAO Z, JIA Y H, TIAN J B. A design of a nose wheel steering control law based on fuzzy control[J]. Journal of Vibration and Shock, 2018, 37(4):128-135(in Chinese).
[5] 魏琼,吴帅,焦宗夏,等. 高速运动舵机的气动伺服加载特性研究[J]. 航空学报, 2013, 34(8):1778-1785. WEI Q, WU S, JIAO Z X, et al. Study on the pneumatic servo loading characteristics of high-speed motion actuators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1778-1785(in Chinese).
[6] 王超,侯远龙,王力,等. 炮控系统电动负载模拟器性能影响因素分析[J]. 电机与控制学报, 2016, 20(12):74-81. WANG C, HOU Y L, WANG L, et al. Influence analysis on electric load simulator for the gun control system[J]. Electric Machines and Control, 2016, 20(12):74-81(in Chinese).
[7] YANG B, BAO R, HAN H T. Robust hybrid control based on PD and novel CMAC with improved architecture and learning scheme for electric load simulator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10):5271-5279.
[8] WANG L S, WANG M Y, GUO B, et al. Analysis and design of a speed controller for electric load simulators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(12):7413-7422.
[9] ZHANG M, YANG B. A naive method of applying fuzzy logic to CMAC in electric load simulator[J]. Transactions of the Institute of Measurement & Control, 2017,39(10):1590-1599.
[10] 吕帅帅,林辉. 电动加载系统分数阶迭代学习复合控制[J]. 北京航空航天大学学报, 2016, 42(9):1944-1951. LYU S S, LIN H. Composite control for electric dynamic loading system based on fractional order iterative learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9):1944-1951(in Chinese).
[11] 王乐三,王明彦,郭犇. 基于比例谐振控制的电动负载模拟器高频率加载控制策略及其稳定性分析[J]. 中国电机工程学报, 2018, 38(14):4262-4270. WANG L S, WANG M Y, GUO B. A high frequency loading control strategy based on proportional resonant control and stability analysis for electric load simulators[J]. Proceedings of the CSEE, 2018, 38(14):4262-4270(in Chinese).
[12] 齐蓉,林辉,陈明. 被动式电动加载系统多余力的研究[J]. 控制与决策, 2006, 21(2):225-228. QI R, LIN H, CHEN M. Research on surplus torque in passive electric loading system[J]. Control and Decision, 2006, 21(2):225-228(in Chinese).
[13] LI C C, LI Y F, WANG G L. H-infinity output tracking control of Electric-motor-driven aerodynamic Load simulator with external active motion disturbance and nonlinearity[J]. Aerospace Science and Technology, 2018, 82(83):334-349.
[14] WANG L S, WANG M Y, GUO B, et al. A loading control strategy for electric load simulators based on proportional resonant control[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6):4608-4618.
[15] 刘晓琳,李卓. 飞机舵机电动加载系统多余力矩抑制方法[J]. 系统工程与电子技术, 2019, 41(6):1366-1373. LIU X L, LI Z. Method to restrain extra torque of aircraft rudder electric loading system[J]. Systems Engineering and Electronics,2019, 41(6):1366-1373(in Chinese).
[16] WANG X J, WANG S P, YAO B. Adaptive robust torque control of electric load simulator with strong position coupling disturbance[J]. International Journal of Control Automation & Systems, 2013, 11(2):325-332.
[17] WANG X J, WANG S P,ZHAO P. Adaptive fuzzy torque control of passive torque servo systems based on small gain theorem and input-to-state stability[J]. Chinese Journal of Aeronautics, 2012, 25(6):906-916.
[18] KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlinear and adaptive control design[M]. New York:John Wiley & Sons, 1995.
[19] 马广富,朱庆华,王鹏宇,等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6):321763. MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):321763(in Chinese).
[20] LI Y F, YANG B, ZHENG T X, et al. Extended state observer based double loop integral sliding mode control of electronic throttle valve[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2501-2510.
[21] 董朝阳,程昊宇,王青. 基于自抗扰的反步滑模制导控制一体化设计[J]. 系统工程与电子技术, 2015, 37(7):1604-1610. DONG C Y, CHENG H Y, WANG Q. Backstepping sliding mode control for integrated guidance and control design based on active disturbance rejection[J]. Systems Engineering and Electronics, 2015, 37(7):1604-1610(in Chinese).
[22] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[23] GAO Z Q. Active disturbance rejection control:a paradigm shift in feedback control system design[C]//American Control Conference. Piscataway:IEEE Press, 2006:2399-2405.
[24] 康忠健,陈醒,崔朝丽,等. 基于ESO与终端滑模控制的直流配电网母线电压控制[J]. 中国电机工程学报, 2018, 38(11):3235-3243. KANG Z J, CHEN X, CUI Z L, et al. Bus voltage control method of DC distribution network based on ESO and terminal sliding mode control[J]. Proceedings of The Chinese Society for Electrical Engineering, 2018, 38(11):3235-3243(in Chinese).
[25] 林飞,孙湖,郑琼林,等. 用于带有量测噪声系统的新型扩张状态观测器[J]. 控制理论与应用, 2005, 22(6):995-998. LIN F, SUN H, ZHENG Q L, et al. Novel extended state observer for uncertain system with measurement noise[J]. Control Theory & Applications, 2005, 22(6):995-998(in Chinese).
[26] CAI H X, HUANG Y M, DU J F, et al. Iterative learning control with extended state observer for telescope system[J]. Mathematical Problems in Engineering, 2015(4-5):1-8.
[27] 许波,朱熀秋. 自适应非奇异终端滑模控制及其在BPMSM中的应用[J]. 控制与决策, 2014, 29(5):833-837. XU B, ZHU H Q. Adaptive nonsingular terminal sliding model control and its application to BPMSM[J]. Control and Decision, 2014, 29(5):833-837(in Chinese).