在检测高衰减的大厚度构件时,相控阵超声声束在非聚焦区域的声能量损失严重,采用线阵或矩阵超声换能器的检测精度和最大检测深度常难以满足要求。首先,建立了合成声束三维声场分布模型,分析了不同阵列超声换能器的空间声场能量分布特点,发现环阵超声换能器在相同聚焦深度处的声场特性更好,同时具有阵元数量少、声束焦斑沿轴线中心完全对称等特点。然后,建立了一种采用环阵超声换能器的全聚焦方法(TFM,Total Focusing Method),并基于试样群速度测量结果对各向异性材料中的聚焦算法进行了优化。在这种方法中将所采集到的全矩阵数据沿换能器中心轴线进行重建,可实现沿深度方向的逐点无穷聚焦。最后,利用所研制的阵列超声C扫描自动检测系统对预埋有缺陷的3D打印钛合金试样进行了对比检测实验,结果表明采用全聚焦成像算法的环阵超声换能器能实现55 mm试样内部直径0.8 mm、深度5.0 mm平底孔和横孔缺陷的精确检测,相对于常规的动态聚焦算法有更高的检测信噪比和定量精度。
Detection accuracy and maximum detection depth in large thickness components with high attenuation often pose a challenge for conventional linear ultrasonic arrays or planar ultrasonic arrays because of the serious loss of acoustic energy of phased array ultrasonic beams in the non-focused area. In this study, a three-dimensional acoustic field distribution model of synthetic beams is first established to analyze the characteristics of acoustic energy distribution of different ultrasonic array transducers. It is found that the annular ultrasonic transducer has a better acoustic field at the same focus depth and a fully symmetric beam focal spot with fewer elements. Then, a Total Focusing Method (TFM) applied to annular ultrasonic arrays and a group velocity optimization method of anisotropic material detection are proposed. In this method, the full matrix data is reconstructed along the axial line of the transducer to realize pointwise infinity focusing along the depth. Finally, experiments on a 3D printed titanium alloy specimen with prefabricated defects are conducted based on the developed ultrasonic array immersion C-scan system. The experimental results show that the annular array transducer based on the TFM algorithm can achieve accurate detection of the flat bottom hole and the transverse hole defects with a diameter of 0.8 mm and depth of 5 mm in the 55 mm thick specimen. Compared with the conventional dynamic depth focusing method, the C-scan images of the TFM have a better signal to noise ratio and quantitative accuracy.
[1] DRINKWATER B W, WILCOX P D. Ultrasonic arrays for non-destructive evaluation:A review[J].NDT & E International, 2006, 39(7):525-541.
[2] WILCOX P D, HOLMES C, DRINKWATER B W. Advanced reflector characterization with ultrasonic phased arrays in NDE applications[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(8):1541-1550.
[3] SONG S J, SHIN H J, JANG Y H. Development of an ultrasonic phased array system for non-destructive tests of nuclear power plant components[J].Nuclear Engineering Design, 2002, 214(1-2):151-161.
[4] 杨平, 郭景涛, 施克仁, 等. 超声相控阵二维面阵实现三维成像研究进展[J].无损检测, 2007, 29(4):177-180, 184. YANG P, GUO J T, SHI K R, et al. Progress in 3D imaging by 2D phased array[J].Nondestructive Testing, 2007, 29(4):177-180, 184(in Chinese).
[5] 赖溥祥, 张碧星, 汪承灏. 环形相控阵换能器辐射和反射声场[J].声学学报, 2007, 32(3):212-220. LAI P X, ZHANG B X, WANG C H. Radiation and reflection acoustical fields of an annular phased array[J].Acta Acustica, 2007, 32(3):212-220(in Chinese).
[6] HAZARD C R, FISHER R A, MILLS D M, et al. Annular array beamforming for 2D arrays with reduced system channels[C]//Proceedings of the IEEE Ultrasonics Symposium, 2003:1859-1862.
[7] 沙正骁, 梁菁, 李彦. 基于超声环阵相控阵的变孔径聚焦检测技术[J].失效分析与预防, 2019, 14(2):84-89, 95. SHA Z X, LIANG J, LI Y. Vari-aperture focusing inspection technique based on ultrasonic annular phased array[J].Failure Analysis and Prevention, 2019, 14(2):84-89, 95(in Chinese).
[8] LANE C J L, DUNHILL A K, DRINKWATER B W, et al. The inspection of anisotropic single-crystal components using a 2-D ultrasonic array[J].IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(12):2742-2752.
[9] KOLKOORI S R, RAHMAN M U, CHINTA P K, et al. Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model:Numerical and experimental comparison[J].Ultrasonics, 2013, 53(2):396-411.
[10] PORTZGEN N, GISOLF D, BLACQUIERE G. Inverse wave field extrapolation:A different NDI approach to imaging defects[J].IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(1):118-127.
[11] SCHMERR L W. Fundamentals of ultrasonic phased arrays[M]. New York:Springer International Press, 2015:31-40.
[12] HOLMES C, DRINKWATER B W, WILCOX P D. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation[J].NDT & E International, 2005, 38(8):701-711.
[13] YAN D, SUTCLIFFE M, WRIGHT B, et al. Ultrasonic imaging of full matrix capture acquired data for carbon fibre-reinforced polymer[J].Insight, 2013, 55(9):477-481.
[14] HUNTER A J, DRINKWATER B W, WILCOX P D. The wavenumber algorithm for full-matrix imaging using an ultrasonic array[J].IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(11):2450-2462.
[15] VELICHKO A, WILCOX P D. Reversible back-propagation imaging algorithm for post processing of ultrasonic array data[J].IEEE Transaction on Ultrasoics, and Frequency Control, Ferroelectrics, and Frequency Control, 2009, 56(11):2492-2503.
[16] LI C, PAIN D, WILCOX P D, et al. Imaging composite material using ultrasonic arrays[J].NDT & E International, 2013, 53:8-17.
[17] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese).
[18] ZELTMANN S E, GUPTA N, TSOUTSOS N G, et al. Manufacturing and security challenges in 3D printing[J].JOM, 2016, 68(7):1872-1881.
[19] 周正干, 李文涛, 李洋, 等. 相控阵超声水浸C扫描自动检测系统的研制[J].机械工程学报, 2017, 53(12):28-34. ZHOU Z G, LI W T, LI Y, et al. Development of ultrasonic phased array immersion C-scan automatic detection system[J].Journal of Mechanical Engineering, 2017, 53(12):28-34(in Chinese).
[20] SUTCLIFFE M, WESTON M, DUTTON B, et al. Real-time full matrix capture for ultrasonic non-destructive testing with acceleration of post-processing through graphic hardware[J].NDT & E International, 2012, 51:16-23.