[1] 朱自强. 应用计算流体力学[M]. 北京:北京航空航天大学出版社, 1998. ZHU Z Q. Applied computational fluid dynamics[M]. Beijing:Beihang University Press, 1998(in Chinese).
[2] 傅德薰, 马延文. 计算流体力学[M]. 北京:高等教育出版社, 2002. FU D X, MA Y W. Computational fluid dynamics[M]. Beijing:High Education Press, 2002(in Chinese).
[3] 吴子牛. 计算流体力学基本原理[M]. 北京:科学出版社, 2002. WU Z N. Basic principles of computational fluid dynamics[M]. Beijing:Science Press, 2002(in Chinese).
[4] 张涵信, 沈孟育. 计算流体力学——差分方法的原理和应用[M]. 北京:国防工业出版社, 2003. ZHANG H X, SHEN M Y. Computational fluid dynamics——Theory and application of finite difference method[M]. Beijing:National Defense Industry Press, 2003(in Chinese).
[5] 任玉新, 陈海昕. 计算流体力学基础[M]. 北京:清华大学出版社, 2006. REN Y X, CHEN H X. Foundations of computational fluid dynamics[M]. Beijing:Tsinghua University Press, 2006(in Chinese).
[6] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006. YAN C. Computational fluid dynamics methods and its application[M]. Beijing:Beihang University Press, 2006(in Chinese).
[7] ROACHE P J. Computational fluid dynamics[M]. Socorro:Hermosa Publisher, 1972.
[8] FLECTCHER C A J. Computational techniques for fluid dynamics[M]. New York:Spring-Verlag, 1988.
[9] ANDERSON J D. Computational fluid dynamics:Basics with applications[M]. New York:McGraw-Hill, 1995.
[10] PEYRET R. Handbook of computational fluid mechanics[M]. Pittsburgh:Academic Press, 1996.
[11] TORO E F. Riemann solvers and numerical methods for fluid dynamics:A practical introduction[M]. Berlin:Springer, 1997.
[12] LEVEQUE R J. Finite volume methods for hyperbolic problems[M]. Combridge:Combridge University Press, 2002.
[13] 黄志澄. 高超声速飞行器空气动力学[M]. 北京:国防工业出版社, 1995. HUANG Z C. Hypersonic aircraft aerodynamics[M]. Beijing:National Defense Industry Press, 1995(in Chinese).
[14] 张兆顺, 崔桂香, 许晓春. 湍流理论与模拟[M]. 北京:清华大学出版社, 2005. ZHANG Z S, CUI G X, XU C X. Turbulence theory and simulation[M]. Beijing:Tsinghua University Press, 2005(in Chinese).
[15] SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 53(2):371-414.
[16] 郑晓静. 风沙运动的沙粒带电机理及其影响的研究进展[J]. 力学进展, 2004, 34(1):77-86. ZHENG X J. Advances in investigation on electrification of wind-blown sands and its effects[J]. Advances in Mechanics, 2004, 34(1):77-86(in Chinese).
[17] 李劲菁. 基于高阶熵条件格式的Euler方程与Navier-Stokes方程混合算法[D]. 北京:北京航空航天大学, 2002. LI J J. On the hybrid algorithm of Euler and Navier-Stokes equations based on high-order entropy condition scheme[D]. Beijing:Beihang Univeristy, 2002(in Chinese).
[18] THOMAS J W. Numerical partial differential equations[M]. New York:Springer-Verlag, 1995.
[19] CROCCO L. A suggestion for the numerical solution of the steady Navier-Stokes equations[J]. AIAA Journal, 1965, 3(10):1824-1832.
[20] MORETTI G, ABBETT M. A time-dependent computational method for blunt body flows[J]. AIAA Journal, 1966, 4(12):2136-2141.
[21] 水鸿寿. 一维流体力学差分方法[M]. 北京:国防工业出版社, 1998. SHUI H S. One dimensional fluid mechanics finite difference method[M]. Beijing:National Defense Industry Press, 1998(in Chinese).
[22] 沈荣华, 冯果忱. 微分方程数值解法[M]. 北京:人民教育出版社,1980. SHEN R H, FENG G C. Numerical methods of partial differential equation[M]. Beijing:People's Education Press, 1980(in Chinese).
[23] BEAM R M, WARMING R F. An implicit finite-difference algorithm for hyperbolic system in conservation law form[J]. Journal of Computational Physics, 1976, 22:87-109.
[24] MACCORMACK R W. A numerical method for solving the equations of compressible viscous flow:AIAA-1981-0110[R]. Reston:AIAA, 1981.
[25] PULLIAM T H, STEGER J L. Recent improvements in efficiency, accuracy, and convergence for implicit approximate factorization algorithms:AIAA-1985-0360[R]. Reston:AIAA,1985.
[26] PULLIAM T H, CHAUSSEE D S. A diagonal form of an implicit approximate factorization algorithm[J]. Journal of Computational Physics, 1981, 39:347-363.
[27] YOON S, JAMESON A. Lower-upper symmetric Gauss-Sediel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9):1025-1026.
[28] LUO H, BAUM J D, LOHNER R. Matrix-free implicit method for compressible flow on unstructured grids[J]. Journal of Computational Physics, 1998,146:664-690.
[29] PUEYO A, ZINGG D W. Efficient Newton-Krylov solver for aerodynamic computations[J]. AIAA Journal, 1998, 36(11):1991-1997.
[30] JAMESON A. Time dependent caculations using multigrid with application to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston:AIAA, 1991.
[31] GODONUV S K. A finite difference method for the computation of discontinuous solutions of the equations of fluids dynamics[J]. Matematichestki Sbornik, 1959, 47(89):271-306(in Russian).
[32] BORIS J P, BOOK D L. Flux corrected transport Ⅰ. SHASTA, a fluid transport algorithm that works[J]. Journal of Computational Physics, 1973, 11:25-40.
[33] HARTEN A, ZWAS G. Self-adjusting hybrid schemes for shock computations[J]. Journal of Computational Physics, 1972, 9:568-583.
[34] HARTEN A. High resolution schemes for hypersonic conservation laws[J]. Journal of Computational Physics, 1983, 49:357-393.
[35] JAMESON A, SCHMIDT W, TURKEL E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes:AIAA-1981-1259[R]. Reston:AIAA, 1981.
[36] VAN LEER B. Towards the ultimate conservation difference scheme:Ⅱ. Monotonicity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14:361-370.
[37] VAN LEER B. Towards the ultimate conservation difference scheme:Ⅲ. Upstream-centered finite-difference schemes for ideal compressible flow[J]. Journal of Computational Physics, 1977, 23:263-275.
[38] VAN LEER B. Towards the ultimate conservation difference scheme:Ⅳ. A new approach to numerical convection[J]. Journal of Computational Physics, 1977, 23:276-299.
[39] VAN LEER B. Towards the ultimate conservation difference scheme:Ⅴ. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 3:101-136.
[40] COLLELA P, WOODWARD P. The piecewise parabolic method for gas-dynamical simulations[J]. Journal of Computational Physics, 1984, 54:264-289.
[41] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high-order accurate essentially non-oscillatory schemes Ⅲ[J]. Journal of Computational Physics, 1987, 71:231-303.
[42] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115:200-212.
[43] JIANG G, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126:208-228.
[44] LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103:16-42.
[45] FU D X, MA Y W. A high order accurate difference scheme for complex flow[J]. Journal of Computational Physics, 1997, 134:1-15.
[46] ADAMS N A, SHARIFF K. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems[J]. Journal of Computational Physics, 1996, 127:27-51.
[47] DENG X G, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130:77-91.
[48] DENG X G, ZHANG H X. Developing high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:22-44.
[49] PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. Journal of Computational Physics, 2002, 178:81-117.
[50] REN Y X, LIU M, ZHANG H X. A characteristic hyprid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192:365-386.
[51] YEE H C, SJOGREEN B. Nonlinear filtering in compact high order schemes for ideal and non-ideal MHD equations[J]. Journal of Scientific Computing, 2006, 27:507-521.
[52] YEE H C, SJOGREEN B. Development of low dissipative high order filter schemes for multiscale Navier-Stokes/MHD systems[J]. Journal of Computational Physics, 2007, 225:910-934.
[53] ZHANG S H, JIANG S F, SHU C W. Development of nonlinear weighted compact schemes with increasingly higher order accuracy[J]. Journal of Computational Physics, 2008, 227:7294-7321.
[54] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372.
[55] ENGGUIST B, OSHER S. One-side difference approximations for nonlinear conservation laws[J]. Mathematics of Computation, 1981, 36(154):321-351.
[56] OSHER S, SOLOMON F. Upwind difference schemes for hyperbolic conservation laws[J]. Mathematics of Computation, 1982, 38:339-374.
[57] HARTEN A, LAX P D, VON LEER B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J]. SIAM Review, 1983, 25(1):35-61.
[58] TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4:25-34.
[59] STEGER J L, WARMING B. Flux vector splitting of the inviscid gasdynamic equations with applications to finite difference methods[J]. Journal of Computational Physics, 1981, 40:263-293.
[60] VAN LEER B. Flux-vector splitting for the equations:NASA TR 82-30[R]. Washington, D.C.:NASA Langley Reaserch Center, 1982.
[61] LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107:23-39.
[62] LIOU M S. A sequel to AUSM:AUSM+[J]. Journal of Computational Physics, 1996, 129:364-382.
[63] WADA Y, LIOU M S. An accurate and robust flux splitting scheme for shock and contact discontinuities[J]. SIAM Journal on Scientific and Statistical Computing, 1997, 18:633-657.
[64] LIOU M S. Mass flux schemes and connection to shock instability[J]. Journal of Computational Physics, 2000, 160:623-648.
[65] LIOU M S. Ten years in the making-AUSM family:AIAA-2001-2521[R]. Reston:AIAA, 2001.
[66] TATSUMI S, MARTINELLI L, JAMESON A. Design, implementation, and validation of flux limited schemes for the solution of the compressible Navier-Stokes equations:AIAA-1994-0647[R]. Reston:AIAA, 1994.
[67] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. Non-oscillation, non-free parameters dissipative finite difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese).
[68] 张涵信. 无波动、无自由参数、耗散的隐式差分格式[J]. 应用数学与力学, 1991, 12(1):97-100. ZHANG H X. Non-oscillation, non-free parameters and dissipation implicit finite difference scheme[J]. Applied Mathematics and Mechanics, 1991, 12(1):97-100(in Chinese).
[69] LAX P D, WENDROFF B. Difference schemes for hyperbolic equations with high order of accuracy[J]. Communications Pure and Applied Mathematics, 1964, 17:381-393.
[70] MACCORMACK R W. The effect of viscosity in hypervelocity impact cratering:AIAA-1969-0354[R]. Reston:AIAA, 1969.
[71] NESSYAHU H, TADMOR E. Non-oscillatory central differencing for hyperbolic conservation laws[J]. Journal of Computational Physics, 1990, 87:408-463
[72] JIANG G S, LEVY D, LIN C T, et al. High-resolution nonoscillatory central schemes with nonstaggered grid for hyperbolic conservation laws[J]. SIAM Journal on Numerical Analysis, 1998, 35(6):2147-2168.
[73] LEVY D, PUPPO G, RUSSO G. Central WENO schemes for hyperbolic systems of conservation laws[J]. Mathematical Modelling and Numerical Aanalysis, 1999, 33(3):547-571.
[74] LEVY D, PUPPO G, RUSSO G. Compact central WENO schemes for multidimensional conservation laws[J]. SIAM Journal on Scientific Computing, 2000, 22(2):656-672.
[75] LAX P D. Hyperbolic systems of conservation laws[J]. Communications Pure and Applied Mathematics, 1960, 13:217-237.
[76] DAVIS S. A rotationally biased upwind difference scheme for the Euler equations[J]. Journal of Computational Physics, 1984, 56:65-92.
[77] REN Y X. A robust shock-capturing scheme based on rotated Riemann solvers[J]. Computers & Fluids, 2003, 32:1379-1403.
[78] HIROAKI N, KEIICHI K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J]. Journal of Computational Physics, 2008, 227:2560-2581.
[79] GHISLAIN T, PASCALIN T K, YVES B. An accurate shock-capturing scheme based on rotatedhybrid Riemann solver:AUFSRR scheme[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2016, 26(5):1310-1327.
[80] LEVEQUE R J. Large time-step shock capture techniques for scalar conservation laws[J]. SIAM Journal on Numerical Analysis, 1982, 19:1091-1109.
[81] LEVEQUE R J. Convergence of a large time step generalization of godunov's method for conservation laws[J]. Communications on Pure and Applied Mathematics, 1984, 37(4):463-477.
[82] LEVEQUE R J. A large time step generalization of Godunov's method for systems of conservation laws[J]. SIAM Journal on Numerical Analysis, 1985, 22(6):1051-1073.
[83] GUINOT V. The time-line interpolation method for large-time-step Godunov-type schemes[J]. Journal of Computational Physics, 2002, 177:394-417.
[84] QIAN Z S, LEE C H. A class of large time step Godunov schemes for hyperbolic conservation laws and applications[J]. Journal of Computational Physics, 2011, 230(19):7418-7440.
[85] 钱战森. 大时间步长、高分辨率差分格式研究及其应用[D]. 北京:北京航空航天大学,2011. QIAN Z S. On large time step, high resolution finite difference scheme and its application[D]. Beijing:Beihang Univeristy, 2011(in Chinese).
[86] DONG H T, LIU F J. Large time step wave adding scheme for systems of hyperbolic conservation laws[J]. Journal of Computational Physics, 2018, 374:331-360.
[87] HARTEN A. On a large time-step high resolution scheme[J]. Mathematics of Computation, 1986, 46(174):379-399.
[88] 董海涛, 李椿萱. 快速大时间步长熵条件格式的分辨率研究[J]. 北京航空航天大学学报, 2003, 29(11):1011-1016. DONG H T, LEE C H. Researches on the resolution of fast large time step entropy condition scheme[J]. Journal of Beijing University of Aeronautics and Astronautics,2003, 29(11):1011-1016(in Chinese).
[89] QIAN Z S, LEE C H. On large time step TVD scheme for hyperbolic conservation laws and its efficiency evaluation[J]. Journal of Computational Physics, 2012, 231:7415-7430.
[90] PULLIAM T H, STEGER L. Recent improvements in efficiency, accuracy, and convergence for implicit approximate factorization algorithms:AIAA-1985-0360[R]. Reston:AIAA, 1985.
[91] VENKARAKRISHNAN V, JAMESON A. Computation of unsteady transonic flows by the solution of Euler equations[J]. AIAA Journal, 1988, 26(8):974-981.
[92] JORGENSON P, CHIMA R. An unconditionally stable Runge-Kutta method for unsteady flows:AIAA-1989-0205[R]. Reston:AIAA, 1989.
[93] CHADERJIAN N M, GURUSWAMY G P. Unsteady transonic Navier-Stokes computations for an oscillating wing using single and multiple zones:AIAA-1990-0313[R]. Reston:AIAA, 1990.
[94] MOITRA A. Enthalpy damping for high Mach number Euler solutions[J]. AIAA Journal, 1992, 30(2):300-301.
[95] JAMESON A, YOON S. Multigrid solution of the Euler equations using implicit schemes:AIAA-1985-0293[R]. Reston:AIAA, 1985.
[96] COURANT R, FRIEDRICHS K O. Supersonic flow and shock waves[M]. Berlin:Springer, 1999.
[97] LINDQVIST S, AURSAND P, FLATTEN T, et al. Large time step TVD schemes for hypersonic conservation laws[J]. SIAM Journal on Numerical Analysis, 2016, 54(5):2775-2798
[98] PREBEG M, FLATTEN T, MULLER B. Large time step HLL and HLLC schemes[M]//ESAIM:Mathematical Modelling and Numerical Analysis, 2018, 52:1239-1260.
[99] EINFELDT B, MUNZ C D, ROE P L, et al. On Godunov-type methods near low densities[J]. Journal of Computational Physics, 1991, 92(2):273-295.
[100] BILLETT S J, TORO E F. On waf-type schemes for multidimensional hyperbolic conservation laws[J]. Journal of Computational Physics, 1997, 130:1-24.
[101] STRANG G. On the construction and comparison of difference schemes[J]. SIAM Journal on Numerical Analysis, 1968, 5:506-517.
[102] ANDERSON W K, THOMAS J L, VAN LEER B. Comparison of finite volume flux vector splittings for the Euler equations[J]. AIAA Journal, 1986, 24(9):1453-1460.
[103] DADONE A, GROSSMAN B. Surface boundary conditions for the numerical solution of the Euler equations:AIAA-1993-3334[R]. Reston:AIAA, 1993.
[104] LEVEQUE R J. Convergence of a large time step generalization of Godunov's method for conservation laws[J]. Communications on Pure and Applied Mathematics, 1984, 37(4):463-477.
[105] JAMESON A, LAX P D. Conditions for the construction of multi-point total variationl diminishing difference sche-mes[J]. Applied Numerical Mathematics, 1986, 2(3-5):335-345.
[106] JAMESON A, LAX P D. Corrigendum:Conditions for the construction of multi-point total variation diminishing difference schemes[J]. Applied Numerical Mathematics, 1987, 3(3):289.
[107] WANG J, WARNECKE G. On entropy consistency of large time step schemes I. The Godunov and Glimm schemes[J]. SIAM Journal on Numerical Analysis, 1993, 30(5):1229-1251, 1993.
[108] WANG J, WARNECKE G. On entropy consistency of large time step schemes II. Approximate Riemann solvers[J]. SIAM Journal on Numerical Analysis, 1993, 30(5):1252-1267.
[109] WANG J, WEN H, ZHOU T. On large time step Godunov scheme for hyperbolic conservation laws[J]. Communications in Mathematical Sciences, 2004, 2(3):477-495.
[110] TANG H, WARNECKE G. A note on (2K+1)-point conservative monotone schemes[J]. ESAIM:Mathematical Modelling and Numerical Analysis, 2004, 38(2):345-357.
[111] MURILLO J, NAVARRO P G, BRUFAU P, et al. Extension of a finite volume method to large time steps (CFL>1):Application to shallow water flows[J]. International Journal for Numerical Methods in Fluids, 2006, 50:63-102.
[112] HERNANDEZ M M, NAVARRO P G, MURILLO J. A large time step 1D upwind explicit scheme (CFL>1):Application to shallow water equations[J]. Journal of Computational Physics, 2012, 231:6532-6557.
[113] HERNANDEZ M M, HUBBARD M E, NAVARRO P G.A 2D extension of a large time step explicit scheme (CFL>1) for unsteady problems with wet/dry boundaries[J]. Journal of Computational Physics, 2014, 263:303-327.
[114] HERNANDEZ M M, LACASTA A, MURILLO J, et al. A large time step explicit scheme (CFL>1) on unstructured grids for 2D conservation laws:Application to the homogeneous shallow water equations[J]. Applied Mathematical Modelling, 2017, 47:294-317.
[115] XU R, ZHONG D, WU B, et al. A large time step Godunov scheme for free-surface shallow water equations[J]. Chinese Science Bulletin, 2014, 59:2534-2540.
[116] THOMPSON R J, MOELLER T. A discontinuous wave-in-cell numerical scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2015, 299:404-428.
[117] SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27:1-31.
[118] YEE H C. Construction of explicit and implicit symmetric TVD schemes and their applications[J]. Journal of Computational Physics, 1987, 68:151-179.