固体力学与飞行器总体设计

基于加速度频响函数小波分解的模型修正方法

  • 彭珍瑞 ,
  • 曹明明 ,
  • 刘满东
展开
  • 兰州交通大学 机电工程学院, 兰州 730070

收稿日期: 2019-10-08

  修回日期: 2019-12-23

  网络出版日期: 2020-02-13

基金资助

国家自然科学基金(51768035);甘肃省高校协同创新团队项目(2018C-12);兰州市人才创新创业项目(2017-RC-66);兰州交通大学"百名青年优秀人才培养计划"(152022)

Model updating method based on wavelet decomposition of acceleration frequency response function

  • PENG Zhenrui ,
  • CAO Mingming ,
  • LIU Mandong
Expand
  • School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Received date: 2019-10-08

  Revised date: 2019-12-23

  Online published: 2020-02-13

Supported by

National Natural Science Foundation of China (51768035); Collaborative Innovation Team Project of Universities in Gansu Province (2018C-12); Talent Project of Lanzhou City (2017-RC-66); Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University (152022)

摘要

为提高模型修正效率,满足修正方法对于实测环境噪声的鲁棒性,将Kriging模型和小波分解引入加速度频响函数模型修正。首先,将加速度频响函数进行小波分解,用得到的第1层幅值较大的小波系数来表征原频响函数。其次,采用拉丁超立方抽样对初选待修正参数进行设计,根据设计结果对各参数进行灵敏度分析,从而确定模型修正的待修正参数,以待修正参数作为Kriging模型输入,所对应的小波系数作为Kriging模型输出,通过混合灰狼算法寻得最优Kriging模型相关系数,建立精确有效的Kriging模型。最后,以目标加速度频响函数小波分解的小波系数与Kriging模型输出的小波系数差值最小为目标,通过水循环算法求解模型待修正参数。数值算例表明,所提模型修正方法具有良好的修正效果,即使在加速度频响函数中加入信噪比为5 dB的高斯白噪声时,修正误差也低于4%,证明了该方法对于随机噪声的鲁棒性。

本文引用格式

彭珍瑞 , 曹明明 , 刘满东 . 基于加速度频响函数小波分解的模型修正方法[J]. 航空学报, 2020 , 41(7) : 223548 -223548 . DOI: 10.7527/S1000-6893.2020.23548

Abstract

To improve the efficiency of model updating and satisfy its robustness for the measured environmental noise, the Kriging model and wavelet decomposition are introduced into the model updating of the acceleration frequency response function. Firstly, the acceleration frequency response function is decomposed by wavelets, and the obtained wavelet coefficients with large amplitudes in the first layer are used to represent the original frequency response function. Secondly, the Latin hypercube sampling is utilized to design the primary parameters to be updated, and the sensitivity analysis of each parameter carried out according to the design results to determine the parameters to be modified, which are then used as the inputs of the Kriging model, while the corresponding wavelet coefficients as the outputs of the model. The optimal correlation coefficients of the Kriging model are found through the mixed grey wolf algorithm, with which an accurate and effective Kriging model is established. Finally, with the error between the wavelet coefficients calculated from the Kriging model and those from tests as the objective function, a minimization problem is solved by the water cycle algorithm for parameter updating. Numerical examples show the effectiveness of the proposed model updating method. When Gaussian white noise with a signal-to-noise ratio of 5 dB is added to the acceleration frequency response function, the updating error is smaller than 4%, proving the robustness of the method against random noise.

参考文献

[1] 张令弥. 计算仿真与模型确认及在结构环境与强度中的应用[J]. 强度与环境, 2002, 29(2):42-47,56. ZHANG L M. Computer simulation & model validation with application to strength and environment engineering[J]. Structure & Environment Engineering, 2002, 29(2):42-47,56(in Chinese).
[2] MOTTERSHEAD J E, FRISWELL M I. Model updating in structural dynamics:A survey[J]. Journal of Sound and Vibration, 1993, 167(2):347-375.
[3] 郭勤涛, 张令弥, 费庆国. 结构动力学有限元模型修正的发展-模型确认[J]. 力学进展, 2006, 36(1):36-42. GUO Q T, ZHANG L M, FEI Q G. From FE model updating to model validation:Advances in modeling of dynamic structures[J]. Advances in Mechanics, 2006, 36(1):36-42(in Chinese).
[4] 李伟明, 洪嘉振. 基于频响函数的模型修正方法[J]. 上海交通大学学报, 2011, 45(10):1455-1459. LI W M, HONG J Z. Research on model updating method based on frequency response functions[J]. Journal of Shanghai Jiao Tong University, 2011, 45(10):1455-1459(in Chinese).
[5] 朱凼凼, 冯咬齐, 向树红. 基于频率响应函数的动力学模型修正方法研究[J]. 中国工程科学, 2005, 7(8):89-94. ZHU D D, FENG Y Q, XIANG S H. Research of refinement methods of dynamic model based on frequency response functions[J]. Engineering Science, 2005, 7(8):89-94(in Chinese).
[6] HEMEZ F M, BROWN G W. Improving structural dynamics models by correlating simulated to measured frequency response functions[C]//39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit. Reston:AIAA, 1998:772-782.
[7] 殷红, 马静静, 董小圆, 等. 基于频响函数的结构损伤识别模型修正方法[J]. 噪声与振动控制, 2019, 39(2):7-13. YIN H, MA J J, DONG X Y, et al. Structural damage identification using model updating method[J]. Noise and Vibration Control, 2019, 39(2):7-13(in Chinese).
[8] ESFANDIARI A, SANAYEI M, BAKHTIARI-NEJAD F, et al. Finite element model updating using frequency response function of incomplete strain data[J]. AIAA Journal, 2010, 48(7):1420-1433.
[9] 杨海峰, 吴子燕, 吴丹. 基于加速度频率响应函数的结构损伤测量方法研究[J]. 振动与冲击, 2007, 26(2):90-92,97,178. YANG H F, WU Z Y, WU D. Structural damage detection method based on acceleration frequency response function[J]. Journal of Vibration and Shock, 2007, 26(2):90-92,97,178(in Chinese).
[10] KWON K S, LIN R M. Frequency selection method for FRF-based model updating[J]. Journal of Sound and vibration, 2004, 278(1-2):285-306.
[11] 张勇, 侯之超, 赵永玲. 基于频响函数截断奇异值响应面的有限元模型修正[J]. 振动工程学报, 2017, 30(3):341-348. ZHANG Y, HOU Z C, ZHAO Y L. Finite element model updating based on response surface of the truncated singular values of frequency response functions[J]. Journal of Vibration Engineering, 2017, 30(3):341-348(in Chinese).
[12] 张冬冬, 郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用[J]. 振动与冲击, 2013, 32(9):187-191. ZHANG D D, GUO Q T. Application of Kriging response surface in finite element model validation[J]. Journal of Vibration and Shock, 2013, 32(9):187-191(in Chinese).
[13] 郭俊龙, 马立元, 李永军, 等. 大型复杂钢管焊接结构损伤识别新方法[J]. 振动与冲击, 2016, 35(18):186-189,195. GUO J L, MA L Y, LI Y J, et al. New damage identification method for large complex steel tube welded structure[J]. Journal of Vibration and Shock, 2016, 35(18):186-189,195(in Chinese).
[14] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[15] 王巨涛, 王春洁, 宋顺广. 结构加速度频响函数模型修正的Kriging方法[J]. 工程科学学报, 2017, 39(7):1087-1093. WANG J T, WANG C J, SONG S G. Structural model updating of acceleration frequency response function based on Kriging method[J]. Chinese Journal of Engineering, 2017, 39(7):1087-1093(in Chinese).
[16] WANG J T, WANG C J, ZHAO J P. Frequency response function-based model updating using Kriging Model[J]. Mechanical Systems & Signal Processing, 2017, 87(A):218-228.
[17] 杨修铭, 郭杏林, 李东升. 基于Kriging模型的频响函数有限元模型修正方法[J]. 计算力学学报, 2018, 35(4):487-493. YANG X M, GUO X L, LI D S. Kriging model based finite element model updating method using frequency response function[J]. Chinese Journal of Computational Mechanics, 2018, 35(4):487-493(in Chinese).
[18] DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627.
[19] 郭晓霞, 杨慧中. 基于粒子群优化算法的小波阈值去噪方法研究[J]. 计算机工程与应用, 2009, 45(31):122-124. GUO X X, YANG H Z. Research of wavelet threshold de-noising method based on particle swarm optimization[J]. Computer Engineering and Applications, 2009, 45(31):122-124(in Chinese).
[20] ZHU A J, XU C P, LI Z, et al. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC[J]. Journal of Systems Engineering and Electronics, 2015, 26(2):317-328.
[21] ESKANDAR H, SADOLLAH A, BAHREININEJAD A, et al. Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems[J]. Computers and Structures, 2012, 110-111:151-166.
文章导航

/