星光导航技术专栏

地球卫星星光折射导航量测量及其性能对比

  • 宁晓琳 ,
  • 梁晓钰 ,
  • 孙晓函 ,
  • 王帆 ,
  • 王龙华 ,
  • 房建成
展开
  • 1. 北京航空航天大学 前沿科学技术创新研究院, 北京 100083;
    2. 北京航空航天大学 仪器科学与光电工程学院, 北京 100083

收稿日期: 2019-09-29

  修回日期: 2019-11-06

  网络出版日期: 2020-02-13

基金资助

国家自然科学基金(61722301);空间智能控制技术重点实验室开放基金(ZDSYS-2017-04)

Satellite stellar refraction navigation measurements and their performance: A comparison

  • NING Xiaolin ,
  • LIANG Xiaoyu ,
  • SUN Xiaohan ,
  • WANG Fan ,
  • WANG Longhua ,
  • FANG Jiancheng
Expand
  • 1. Research Institute for Frontier Science, Beihang University, Beijing 100083, China;
    2. School of Instrument Science&Opto-electronics Engineering, Beihang University, Beijing 100083, China

Received date: 2019-09-29

  Revised date: 2019-11-06

  Online published: 2020-02-13

Supported by

National Natural Science Foundation of China (61722301);Funded by Science and Technology on Space Intelligent Control Laboratory (ZDSYS-2017-04)

摘要

星光折射天文导航是一种重要的地球卫星自主导航方式,量测量是影响其导航精度的重要因素。在地球卫星星光折射导航中,折射视高度、星光折射角、折射星像素坐标(折射星矢量)是3种常用的量测量,结合星光折射导航的基本原理重点介绍了这3种量测量的获取方法和量测模型,通过仿真和可观性分析比较了相同条件下3种量测量的导航性能。仿真结果表明,由于折射星像素坐标可以同时反映星光折射的大小和方向可观性高,而星光折射角和折射视高度仅能反映星光折射的大小,无法反映其方向可观性低,因此折射星像素坐标的导航性能优于星光折射角和折射视高度。此外,本文也对星敏感器精度、卫星轨道高度、星敏感器安装夹角3种因素对3种方法导航性能的影响进行了分析。

本文引用格式

宁晓琳 , 梁晓钰 , 孙晓函 , 王帆 , 王龙华 , 房建成 . 地球卫星星光折射导航量测量及其性能对比[J]. 航空学报, 2020 , 41(8) : 623536 -623536 . DOI: 10.7527/S1000-6893.2020.23536

Abstract

Stellar refraction celestial navigation is an important autonomous navigation method for earth satellites. Measurements are an important factor influencing the navigation accuracy. The refraction apparent height, stellar refraction angles, and refraction star pixel coordinates (refraction star vectors) are three commonly used measurements of the satellite stellar refraction navigation. The obtainment methods and measurement models of the three measurements are introduced on the basis of the fundamental principle of the stellar refraction navigation. Under the same conditions, the navigation performance of these three measurements are compared through simulation and observability analysis. The simulation results show that the observability of the refraction star pixel coordinates is high, because this measurement contains both the magnitude and direction of the star refraction rays, while the stellar refraction angle and the refraction apparent height can only reveal the magnitude of the stellar refraction, exhibiting low direction observability. Therefore, the navigation performance of the refraction star pixel coordinates (refraction star vectors) is better than that of the other two measurements. Furthermore, the influence of three factors, namely, the accuracy of the star sensor, the satellite orbit height, and the installation angle of the star sensor, on the navigation performance of the three methods is analyzed.

参考文献

[1] 房建成, 宁晓琳, 刘劲. 航天器自主天文导航原理与方法[M].第2版.北京:国防工业出版社, 2017. FANG J C, NING X L, LIU J. Principles and method of spacecraft celestial navigation[M]. 2th ed. Beijing:National Defense Industry Press, 2017(in Chinese).
[2] LITTESTRAND R L, CARROLL J E. Horizon-based satellite navigation systems[J]. IEEE Transactions on Aerospace and Navigational Electronics, 1963, 9(1):247-268.
[3] RIANT P. Analysis of a satellite navigation system by stellar refraction[C]//36th Congress of the International Astronautical Federation, 1986:1-8.
[4] 章仁为. 卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社, 1998. ZHANG R W. Attitude dynamics and control of satellite orbit[M]. Beijing:Beihang University Press, 1998(in Chinese).
[5] 董云峰, 章仁为. 利用星敏感器的卫星自主导航[J]. 宇航学报, 1995, 16(4):36-41. DONG Y F, ZHANG R W. Autonomous satellite navigation by stellar sensor[J]. Journal of Astronautics, 1995, 16(4):36-41(in Chinese).
[6] WHITE R, GOUNLEY R. Satellite autonomous navigation with SHAD (stellar horizon atmospheric dispersion)[R]. Cambridge:Charles Stark Draper Lab Inc., 1987.
[7] COUNLEY R, WHITE R, GAI E. Autonomous satellite navigation by stellar refraction[J]. Journal of Guidance Control and Dynamics, 1984, 7(2):129-134.
[8] LAIR J L, DUCHON P, RIANT P, et al. Satellite navigation by stellar refraction[J]. Acta Astronautica, 1985, 17(10):1069-1079.
[9] CHORY M, HOFFMAN D, MAJOR C, et al. Autonomous navigation-where we are in 1984[C]//Guidance and Control Conference, 2006:27-37.
[10] 周凤岐, 赵黎平, 周军. 基于星光大气折射的卫星自主轨道确定[J]. 宇航学报, 2002, 23(4):20-23. ZHOU F Q, ZHAO L P, ZHOU J. Autonomous orbit determination for Earth satellites by starlight atmospheric refraction[J]. Journal of Astronautics, 2002, 23(4):20-23(in Chinese).
[11] 唐琼. 基于星光折射航天器自主轨道确定[D]. 西安:西北工业大学, 2007. TANG Q. Autonomous orbit determination by stellar refraction for spacecraft[D]. Xi'an:Northwestern Polytechnical University, 2017(in Chinese).
[12] 薛申芳, 宁书年, 金声震, 等. 组合大视场星敏感器自主定轨中的星光折射[J]. 光学学报, 2006, 26(7):971-974. XUE S F, NING S N, JIN S Z, et al. The starlight refraction in autonomous orbit determination for satellite by large field of view star sensors[J]. Acta Optica Sinica, 2006, 26(7):971-974(in Chinese).
[13] 王国权, 宁书年, 金声震,等. 卫星自主导航中星光大气折射模型的研究方法[J]. 中国矿业大学学报, 2004, 33(6):616-620. WANG G Q, NING S N, JIN S Z, et al. Research on starlight atmospheric refraction model in autonomous satellite navigation[J]. Journal of China University of Mining &.Technology, 2004, 33(6):616-620(in Chinese).
[14] 胡静, 杨博. 一种改进的星光大气折射观测模型[J]. 红外与激光工程, 2009, 38(2):272-277. HU J, YANG B. Modified measurement model of stellar horizon atmospheric refraction[J]. Infrared and Laser Engineering, 2009, 38(2):272-277(in Chinese).
[15] WANG X L, MA S. A Celestial analytic positioning method by stellar horizon atmospheric refraction[J]. Chinese Journal of Aeronautics, 2009, 22(3):293-300.
[16] 王海涌, 金光瑞, 赵彦武. 间接敏感地平星敏感器视场内折射星数的概率分布适用模型[J]. 光学学报, 2013, 33(12):8-13. WANG H Y, JIN G R, ZHAO Y W. Applicable probability distribution model of refracted star number in field of view of indirectly sensing horizon star sensor[J].Acta Optica Sinica, 2013, 33(12):8-13(in Chinese).
[17] 武鹏飞, 宋峰, 魏合理. 星光导航大气折射模型及数据模式研究[J]. 现代防御技术, 2017, 45(2):6-13. WU P F, SONG F, WEI H L. Atmospheric refraction model and data mode for starlight navigation[J]. Modern Defense Technology, 2017, 45(2):6-13(in Chinese).
[18] 杨博, 苗峻. 一种航天器星光折射连续导航方法[J]. 宇航学报, 2018, 39(2):139-146. YANG B, MIAO J. A continuous navigation method of spacecraft based on stellar refraction[J]. Journal of Astronautics, 2018, 39(2):139-146(in Chinese).
[19] 卢欣, 李春艳, 李晓,等. 星光导航技术现状与发展综述[J]. 空间控制技术与应用,2017,43(4):1-8. LU X, LI C Y, LI X, et al. Current situation and development trends of starlight navigation technology[J]. Aerospace Control and Application, 2017,43(4):1-8(in Chinese).
[20] 宁晓琳, 王龙华. 舰船航海中的高精度天体高度获取方法[J]. 光学学报, 2013, 33(3):17-25. NING X L, WANG L H. Method of high accuracy celestial altitude obtainment in vessel navigation[J]. Acta Optica Sinica, 2013, 33(3):17-25(in Chinese).
[21] 钱华明, 郎希开, 钱林琛,等. 弹道导弹的捷联惯性/天文组合导航方法[J]. 北京航空航天大学学报, 2017, 43(5):857-864. QIAN H M, LANG X K, QIAN L C, et al. Ballistic missile SINS/CNS integrated navigation method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5):857-864(in Chinese).
[22] NING X L, WANG L H, BAI X B, et al. Autonomous satellite navigation using starlight refraction angle measurements[J]. Advances in Space Research, 2013, 51(9):1761-1772.
[23] NING X L, WANG F, FANG J C. An implicit UKF for satellite stellar refraction navigation system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3):1489-1503.
[24] NING X L, SUN X H. Satellite stellar refraction navigation using star pixel coordinates[J]. Journal of the Institute of Navigation, 2019, 66(1):129-138.
[25] 王龙华. 地球卫星星光折射自主天文导航实现方法研究[D]. 北京:北京航空航天大学, 2012. WANG L H. Autonomous celestial navigation method by stellar refraction for earth satellite[D]. Beijng:Beihang University, 2012(in Chinese).
[26] ROBERT L W, SAM W T, FRANK A B. Autonomous satellite navigation using observations of starlight atmospheric refraction[J]. Navigation, 1985, 32(4):317-333.
[27] LIU J, NING X L, MA X, et al. Geometry error analysis in solar Doppler difference navigation for the capture phase[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5):2556-2567.
[28] 踪华, 刘嬿, 高晓颖, 等. 星点坐标辅助的全天区三角形星图识别算法[J]. 航空学报, 2018, 39(9):322045. ZONG H,LIU Y, GAO X Y, et al. All-sky triangle algorithm for star pattern identification aided by star coordinates[J]. Acta Aeronautica et Astronautica Sinica,2018, 39(9):322045.
[29] RUFINO G, ACCARDO D. Enhancement of the centroiding algorithm for star tracker measure refinement[J]. Acta Astronautica, 2003, 53(2):135-147.
[30] YANG H Y, AN X Y, WU J, et al. Autonomous navigation based on stellar refraction for elliptic orbit spacecraft[C]//IEEE System and Control in Aeronautics and Astronautics, 2010:1019-1022.
[31] QIAN H M, SUN L, CAI J N, et al. A starlight refraction scheme with single star sensor used in autonomous satellite navigation system[J]. Acta Astronautica, 2014, 96(1):45-52.
[32] 刘燕, 袁莹涛, 郭翔, 等. 大气折射对电视制导导弹定位精度的影响分析[J]. 航空学报, 2018, 39(12):322248. LIU Y, YUAN Y T, GUO X, et al.Influence analysis of atmospheric refraction on location of television guiding missiles[J].Acta Aeronauticaet Astronautica Sinica, 2018, 39(12):322248(in Chinese).
[33] 丁溯泉, 张波, 刘世勇. STK使用技巧及载人航天工程应用[M]. 北京:国防工业出版社,2016. DING S Q, ZHANG B, LIU S Y. STK Skills and the Applications of Manned Space Engineering[M].Beijing:National Defense Industry Press, 2016(in Chinese).
[34] 常晓华, 崔平远, 王晓明,等. 基于条件数的能观性度量方法及在自主导航系统中的应用[J]. 宇航学报, 2010, 31(5):1331-1337. CHANG X H, CUI P Y, WANG X M, et al. A condition number-based observability analysis method and its application in autonomous navigation system[J]. Journal of Astronautics, 2010, 31(5):1331-1337.
[35] GOSHEN-MESKIN D, BAR-ITZHACK I. Observability analysis of piece-wise constant systems. I. theory[J]. IEEE Transactions on Aerospace & Electronic Systems, 1992, 28(4):1056-1067(in Chinese).
[36] 刘准, 陈哲. 条件数在系统可观测性分析中的应用研究[J]. 系统仿真学报, 2004, 16(7):1552-1555 LIU Z, CHEN Z. Application of condition number in analysis observability of system[J]. Journal of System Simulation, 2004, 16(7):1552-1555(in Chinese).
文章导航

/