电子电气工程与控制

基于IPSO-Elman神经网络的飞机客舱能耗预测

  • 林家泉 ,
  • 孙凤山 ,
  • 李亚冲 ,
  • 庄子波
展开
  • 1. 中国民航大学 电子信息与自动化学院, 天津 300300;
    2. 中国民航大学 飞行学院, 天津 300300

收稿日期: 2019-10-30

  修回日期: 2019-11-19

  网络出版日期: 2020-02-06

基金资助

国家自然科学基金委员会-中国民航局联合基金(U1433202)

Prediction of aircraft cabin energy consumption based on IPSO-Elman neural network

  • LIN Jiaquan ,
  • SUN Fengshan ,
  • LI Yachong ,
  • ZHUANG Zibo
Expand
  • 1. Institute of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China;
    2. Flight Technical College, Civil Aviation University of China, Tianjin 300300, China

Received date: 2019-10-30

  Revised date: 2019-11-19

  Online published: 2020-02-06

Supported by

Joint Fund of the National Natural Science Foundation of China and the Civil Aviation Administration of China (U1433202)

摘要

为了提高飞机客舱使用地面空调制冷时客舱能耗的预测精度,提出了一种改进的粒子群优化(IPSO)Elman神经网络的飞机客舱能耗预测模型。依据对算法中惯性权重与学习因子的收敛域分析,得出了二者合理的取值范围,将粒子到全局最优位置间距离与参数的取值范围相结合,构造了惯性权重与学习因子的动态调节函数,对其进行非线性的动态调节,并引入了变异因子,提出了一种跳出局部最优的策略,防止粒子群优化(PSO)陷入局部最优。将IPSO-Elman应用于Boeing738飞机客舱能耗预测中,与PSO-Elman、Elman算法进行性能比较,仿真结果表明基于IPSO-Elman的客舱能耗预测模型在预测精度和收敛速度方面均有一定的提升。该研究结果为飞机客舱能耗预测模型的建立提供了理论依据,对飞机地面空调的节能与机场电能合理调配提供了支持。

本文引用格式

林家泉 , 孙凤山 , 李亚冲 , 庄子波 . 基于IPSO-Elman神经网络的飞机客舱能耗预测[J]. 航空学报, 2020 , 41(7) : 323614 -323614 . DOI: 10.7527/S1000-6893.2020.23614

Abstract

To improve the prediction accuracy of cabin energy consumption when the aircraft cabin uses ground air conditioning for refrigeration, an aircraft cabin energy consumption prediction model based on the Improved Particle Swarm Optimization (IPSO) Elman neural network is proposed. The main procedure of the IPSO is as follows:the convergence domain analysis of the inertia weight and the learning factors is used to obtain a reasonable range of these two parameters; the range of the two parameters and the distance from the particle to the global optimal position are combined to dynamically adjust the two parameters; the dynamic adjustment function of the inertia weight and the learning factors are then constructed; a variation factor is introduced and a strategy proposed to prevent the PSO from being trapped in the local optimum. The IPSO-Elman is applied to the Boeing738 aircraft cabin energy consumption prediction and compared with PSO-Elman and Elman. The simulation results show the effectiveness of the cabin energy consumption prediction model based on IPSO-Elman in improving both the prediction accuracy and the convergence rate. The research results establish a theoretical basis for the aircraft cabin energy prediction model and provide further support for the energy saving of ground air conditioning and the reasonable allocation of airport electrical energy.

参考文献

[1] 林家泉, 李弯弯. 基于PMV-PPD的地面空调最佳送风速度[J]. 航空学报, 2017, 38(8):121089. LIN J Q, LI W W. Best wind speed of ground air conditioning system based on PMV-PPD[J]. Acta Aeronautica et Astronautica Sinica,2017, 38(8):121089(in Chinese).
[2] CUI W, OUYANG Q, ZHU Y. Field study of thermal environment spatial distribution and passenger local thermal comfort in aircraft cabin[J]. Building & Environment, 2014, 80(10):213-220.
[3] 樊兆峰, 马小平, 邵晓根,等. 非线性系统RBF神经网络多步预测控制[J]. 控制与决策, 2014, 29(7):1274-1278. FAN Z F, MA X P, SHAO X G, et al.RBF neural network multi-step predictive control for nonlinear systems[J]. Control and Decision, 2014, 29(7):1274-1278(in Chinese).
[4] 皮骏, 马圣, 贺嘉诚,等. 基于IGA-ELM网络的滚动轴承故障诊断[J]. 航空学报, 2018, 39(9):422025. PI J, MA S, HE J C, et al. Rolling bearing fault diagnosis based on IGA-ELM network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):422025(in Chinese).
[5] HAMID M F A, RICHARD H G A, RAMLI N A. An analysis on energy consumption of two different commercial buildings in Malaysia[C]//IEEE International Conference on Power & Energy.Piscataway:IEEE Press, 2017:344-349.
[6] 王修岩, 刘艳敏, 张革文,等. 基于PSO和CRO联合算法的飞机客舱能耗预测[J]. 系统仿真学报, 2018, 30(8):263-270. WANG X Y, LIU Y M, ZHANG G W, et al. Prediction of aircraft cabin energy consumption based on PSO and CRO algorithms[J]. Journal of System Simulation, 2018, 30(8):263-270(in Chinese).
[7] ZHOU C, DING L Y, HE R. PSO-based Elman neural network model for predictive control of air chamber pressure in slurry shield tunneling under Yangtze River[J]. Automation in Construction, 2013, 36(15):208-217.
[8] RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):225-240.
[9] WANG C F, LIU K. An improved particle swarm optimization algorithm based on comparative judgment[J]. Natural Computing, 2017,32(6):123-132.
[10] ARUMUGAM M S, RAO M V C. On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems[J]. Applied Soft Computing Journal, 2008, 8(1):324-336.
[11] LI J W, CHENG Y M, CHEN K Z. Chaotic particle swarm optimization algorithm based on adaptive inertia weight[C]//Proceedings of the 26th China Control and Decision-Making Conference, 2014:1310-1315.
[12] ZHANG Y, ZHAO Y, FU X, et al. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra[J]. Optics Communications, 2016, 4(37):56-66.
[13] 王东风, 孟丽. 粒子群优化算法的性能分析和参数选择[J]. 自动化学报, 2016, 42(10):1552-1561. WANG D F, MENG L. Performance analysis and parameter selection of PSO algorithms[J]. Acta Automatica Sinica, 2016, 42(10):1552-1561(in Chinese).
[14] ALKHASAWNEH M S, TAY L T. A hybrid intelligent system integrating the cascade forward neural network with elman neural network[J]. Arabian Journal for Science & Engineering, 2017, 43(12):6737-6749.
[15] WANG D, TAN D, LIU L. Particle swarm optimization algorithm:An overview[J]. Soft Computing, 2017, 22(2):387-408.
[16] ZHANG S, JIANG H H, YIN Y Y, et al. The prediction of the gas utilization ratio based on TS fuzzy neural network and particle swarm optimization[J]. Sensors, 2018, 18(2):625-644.
[17] BONYADI M R, MICHALEWICZ Z. Particle swarm optimization for single objective continuous space problems:A review[J]. Evolutionary Computation, 2017, 25(1):1-54
[18] SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]//Congress on Evolutionary Computation, 2002:1945-1950.
[19] ZHANG Y, ZHAO Y, FU X, et al. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra[J]. Optics Communications, 2016, 4(37):56-66.
[20] ALAHMER A, OMAR M A, MAYYAS A, et al. Effect of relative humidity and temperature control on in-cabin thermal comfort state:Thermodynamic and psychometric analyses[J]. Applied Thermal Engineering, 2015, 31(14):2636-2644.
[21] LONG Q, GUO S, LI Q, et al. Research of converter transformer fault diagnosis based on improved PSO-BP algorithm[J]. IOP Conference Series:Materials Science and Engineering, 2017,231(9):121-127.
[22] GONZALO E, FERNANDEZLUNA J, MARTINEZ J A. A brief historical review of particle swarm optimization[J]. Journal of Bioinformatics & Intelligent Control, 2012, 1(1):3-16.
[23] 孟蓉歌, 张春化, 梁继超. 改进粒子群优化-Elman算法在发动机曲轴脉宽预测中的应用[J]. 中国机械工程, 2018, 29(7):766-770. MENG R G, ZHANG C H, LIANG J C. Applications of advanced PSO-elman in engine crankshaft pulse width predictions[J]. China Mechanical Engineering, 2018,29(7):766-770(in Chinese).
[24] ALKHASAWNEH M S, TAY L T. A hybrid intelligent system integrating the cascade forward neural network with elman neural network[J]. Arabian Journal for Science & Engineering, 2017,3(4):1-13.
文章导航

/