复合材料在大型客机机身主承力结构应用是近年来的发展趋势,通过分析与大型壁板试验结合的方式研究了复合材料机身壁板的静力承载能力,以及疲劳与损伤容限特性。采用理论公式、半经验公式、有限元模态分析研究了蒙皮的屈曲载荷、壁板的承载能力。依靠创新的机身壁板多轴载荷试验系统,模拟机身壁板的实际受载情况,实现充压载荷、拉伸/压缩、剪切载荷的独立施加与组合施加。通过静力试验验证蒙皮屈曲的工程及有限元分析方法和壁板的剩余强度承载分析方法。引入预埋缺陷、BVID、VID冲击损伤,通过试验研究了损伤对应变分布的影响,并通过疲劳、损伤容限试验,验证了壁板的设计以及损伤的无扩展特性。
The application of composite materials in the main loading structure of the aircraft fuselage is the development trend in recent years. In this paper, the static loading capacity, fatigue and damage tolerance characteristics of composite fuselage panels are analyzed with large-scale panel test. The buckling load of skin and the loading capacity of panel are examined by adopting the theoretical formula, the semi empirical formula, and the finite element modal analysis. The advanced multi-load panel test rig is used to simulate the actual loads of fuselage panel, achieving the independent and combined application of the pressure, tension, compression, and shear load. The engineering and finite element analysis method of skin buckling and the residual strength loading analysis method of panel are verified by static tests. By introducing the embedded defect, BVID and VID damage, the influence of the damage on strain distribution is studied by experiment, and the non-expansion property of the damage is verified by fatigue and damage tolerance experiments.
[1] WALKER T H, MINGUET P J, FLYNN B W, et al. Advanced technology composite fuselage-Structural performance:NASA Contractor Report 4732[R]. Washington, D.C.:NASA, 1997.
[2] DEGENHARDT R, KLING A, ROHWER K, et al. Design and analysis of stiffened composite panels including post-buckling and collapse[J]. Computers and Structures, 2008, 86:919-929.
[3] ORIFICI A C, THOMSON R S, DEGENHARDT R, et al. Degradation investigation in a postbuckling composite stiffened fuselage panel[J]. Composite Structures, 2008, 82:217-224.
[4] BISAGNI C, VESCOVINI R, DAVILA C G. Single stringer compression specimen for the assessment of damage tolerance of post bulked structures[J]. Journal of Aircraft, 2011, 48(2):495-502.
[5] MO Y M, GE D Y, ZHOU J F. Experiment and analysis of hat stringer stiffened composite curved panels under axial compression[J]. Composite Structures, 2015, 123:150-160.
[6] 汪厚冰, 林国伟, 韩雪冰. 复合材料帽形加筋壁板剪切屈曲性能[J]. 航空学报,2019, 40(8):222889. WANG H B, LIN G W, HAN X B. Shear buckling performance of composite hat-stiffened panels[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):222889(in Chinese).
[7] 常圆圆, 许希武, 郭树祥. 压缩载荷下复合材料整体加筋板渐进损伤非线性数值分析[J]. 复合材料学报,2011,28(4):202-211. CHANG Y Y, XU X W, GUO S X. Nonlinear progressive damage analysis of integral stiffened composite panels under compressive load[J]. Acta Materiae Compositae Sinica, 2011, 28(4):202-211(in Chinese).
[8] 燕瑛, 曾东. 复合材料层板低速冲击剩余强度的研究[J]. 航空学报,2003,24(2):137-139. YAN Y, ZENG D. Study on the post-impact compressive strength of composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(2):137-139(in Chinese).
[9] 崔海坡, 温卫东, 崔海涛. 层合复合材料板的低速冲击损伤及剩余压缩强度研究[J]. 机械科学与工程, 2006, 25(9):1113-1117. CUI H P, WEN W D, CUI H T. Research on low velocity impact damage and residual compressive strength of laminated composites[J]. Mechanical Science and Technology, 2006, 25(9):1113-1117(in Chinese).
[10] 林智育, 许希武. 含冲击损伤复合材料加筋层板压缩剩余强度[J]. 航空学报,2009,30(1):56-61. LIN Z Y, XU X W. Residual compressive strength of stiffened composite laminates with impact damage[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1):56-61(in Chinese).
[11] COATS T W, HARRIS C E. A progressive damage methodology for residual strength predictions of notched composite panels[M]. Washington, D.C.:NASA Langley Technical Report Server, 1998.
[12] GRAESSER D L, TUTTLE M E. Damage tolerance prediction for stiffened composite panels:Part I Strain field predictions[J]. Journal of Composites Technology and Research, 1996, 18(1):47-56.
[13] GRAESSER D L, TUTTLE M E. Damage tolerance prediction for stiffened composite panels:Part Ⅱ Application of a failure criteria[J]. Journal of Composites Technology and Research, 1996, 18(2):102-108.
[14] 中国民用航空局. 运输类飞机适航标准:CCAR-25-R4[S]. 北京:中国民用航空局, 2011. Civil Aviation Administration of China. Airworthiness standards of transport aircraft:CCAR-25-R4[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese).
[15] CMH17协调委员会. 复合材料手册3[M]. 汪海,译. 上海:上海交通大学出版社, 2015:583-584. CMH17 Coordination Committee. Composite manual 3[M]. WANG H, translated. Shanghai:Shanghai Jiaotong University Press, 2015:583-584(in Chinese).
[16] FAA. Composite aircraft structure:AC20-107B[S]. Washington, D. C.:Department of Transportation, 2009.
[17] 邓凡臣, 柴亚南, 薛会民,等. 大型飞机机身曲板多轴载荷试验技术研究[J]. 实验力学,2018,33(3):484-490. DENG F C, CHAI Y N, XUE H M, et al. On the experimental technique for large aircraft fuselage curved panel subjected to multiaxial loading[J]. Journal of Experimental Mechanics, 2018, 33(3):484-490(in Chinese).
[18] CAMPBELL F C. Structural composite materials[M]. Materials Park:ASM International the Materials Information Society, 2010:442-444.
[19] 中国航空研究院. 复合材料结构稳定性分析指南[M]. 北京:航空工业出版社, 2002:5-11. China Aviation Research Institute. Guide for structural stability analysis of composite materials[M]. Beijing:Aviation Industry Press, 2002:5-11(in Chinese).
[20] 牛春匀. 实用飞机结构应力分析及尺寸设计[M]. 冯振宇,译. 北京:航空工业出版社,2009:394-395. NIU C Y. Airframe stress analysis and sizing[M]. FENG Z Y, translated. Beijing:Aviation Industry Press, 2009:394-395(in Chinese).
[21] VON K T, SECHLER E E, DONNELL L H. The strength of thin plates in compression[J]. Transactions of the ASME, 1932, 54(2):53-57.
[22] MSC. MSC. Nastran quick reference guide[M]. Newport Beach:MSC. Software Corporation,2010.
[23] COAN J M. Large-deflection theory for plates with small initial curvature loaded in edge compression[J]. Journal of Applied Mechanics, 1951, 18(2):143-151.