流体力学与飞行力学

凝胶自燃推进剂着火及火焰试验

  • 夏益志 ,
  • 王勇 ,
  • 洪流 ,
  • 杨伟东 ,
  • 陈宏玉
展开
  • 西安航天动力研究所 液体火箭发动机技术重点实验室, 西安 710100

收稿日期: 2019-07-01

  修回日期: 2019-08-01

  网络出版日期: 2020-01-18

基金资助

液体火箭发动机技术重点实验室基金(6142704020203)

Experiment on ignition and flame of gelled hypergolic bipropellants

  • XIA Yizhi ,
  • WANG Yong ,
  • HONG Liu ,
  • YANG Weidong ,
  • CHEN Hongyu
Expand
  • Science and Technology on Liquid Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China

Received date: 2019-07-01

  Revised date: 2019-08-01

  Online published: 2020-01-18

Supported by

Foundation of Science and Technology on Liquid Rocket Engine Laboratory(6142704020203)

摘要

为研究撞击式喷嘴凝胶自燃推进剂着火及火焰特性,在单喷嘴矩形燃烧室内进行了凝胶一甲基肼/四氧化二氮(MMH/NTO)喷雾燃烧过程试验研究。试验采用撞击角为75°、90°、105°的两股互击式喷嘴和撞击角为90°的两股燃料撞击一股氧化剂(F-O-F)、两股氧化剂撞击一股燃料(O-F-O)三股互击式喷嘴,首先结合高速摄影与纹影技术拍摄了燃烧过程纹影图像,随后采用高速摄影直接拍摄了燃烧过程火焰自然辐射发光图像。通过图像处理,提取了火焰着火距离、火焰轴向传播速度、火焰夹角以及反应距离,并分析了喷嘴类型、燃料射流速度的影响。试验结果表明,凝胶MMH/NTO燃烧主要发生在液膜破碎成液丝之后,射流速度越快,燃气扩散速度越快;凝胶MMH/NTO推进剂采用撞击角为105°的两股互击式喷嘴时着火距离最短;凝胶MMH/NTO着火时火焰轴向传播速度随燃料射流速度增加而增加,撞击角为90°时火焰沿喷注面下游传播速度较快;凝胶MMH/NTO稳态燃烧时火焰夹角随燃料射流速度增加而增加,反应距离随燃料射流速度增加而减小,其中撞击角为90°的两股互击式喷嘴火焰夹角最大,撞击角为105°的两股互击式喷嘴反应距离最短。

本文引用格式

夏益志 , 王勇 , 洪流 , 杨伟东 , 陈宏玉 . 凝胶自燃推进剂着火及火焰试验[J]. 航空学报, 2020 , 41(1) : 123254 -123254 . DOI: 10.7527/S1000-6893.2019.23254

Abstract

Aiming at elucidating the detailed ignition and flame characteristics of gelled hypergolic bipropellants utilizing an impinging injector, an experiment is conducted to investigate the combustion processes of gelled Monomethylhydrazine/Nitrogen Tetroxide(MMH/NTO) in a square combustion chamber with a single impinging injector. Unlike-impinging injector, including 75°, 90°, and 105° impinging angles, and 90° impinging angle triplet impinging injector, including Fuel-Oxidizer-Fuel (F-O-F) and Oxidizer-Fuel-Oxidizer(O-F-O), are used in the experiment. Schlieren technology and a high-speed camera are combined to investigate the spray and combustion processes firstly, then natural flame images are obtained by a high-speed camera directly. The ignition distance, axial flame speed, flame angle, and induction distance are obtained by image processing technology, and then the effect of injector type and jet velocity of fuel are discussed. The results show that the combustion of gelled MMH/NTO occurrs after liquid sheets breakup into ligaments, and the gas diffusion rate increases with the increasing of fuel jet velocity. The ignition distance of gelled MMH/NTO is the shortest when using the 105° unlike-impinging injector. The axial flame speed increases with the increasing of fuel jet velocity, and it's quicker when the impinging angle is 90°. During the steady combustion, the flame angle increases when the jet velocity of fuel increases, but the induction distance decreases conversely. The flame angle is the maximum when using the 90° unlike-impinging injector, and induction distance is the shortest if using the 105° unlike-impinging injector.

参考文献

[1] KUNIN A, NATAN B, GREENBERG J B. Theoretical model of the transient combustion of organnic-gellant-based gel fuel droplets[J]. Journal of Propulsion and Power, 2010, 26(4):765-771.
[2] ANTAKI P. Transient processes in a rigid slurry droplet during liquid vaporization and combustion[J]. Combustion Science and Technology, 1986, 46(3):113-135.
[3] LEE A, LAW C K. Gasification and shell characteristics in slurry droplet burning[J].Combustion and Flame, 1991, 85(1-2):77-93.
[4] PALASZEWSKI B, ZAKANY J S. Metallized gelled propellants:Oxygen/RP-1/aluminum rocket heat transfer and combustion measurements:AIAA-1996-2622[R]. Reston, VA:AIAA, 1996.
[5] MORDOSKY J, ZHZANG B, KUO K, et al. Spray combustion of gelled RP-1 propellants containing nano-sized aluminum particles in rocket engine conditions:AIAA-2001-3274[R]. Reston, VA:AIAA, 2001.
[6] PALASZEWSKI B, JURNS J, BREISACHER K, et al. Metallized gelled propellants combustion experiments in a pulse detonation engine:AIAA-2004-4191[R]. Reston, VA:AIAA, 2004.
[7] RAHIMI S, HASAN D, PERETZ A. Development of laboratory-scale gel propulsion technology:AIAA-2001-3265[R]. Reston, VA:AIAA, 2001.
[8] DENNIS J, YOON C, SANTOS P, et al. Characterization of gelling systems for development of hypergolic gels[C]//4th European Conference for Aerospace Sciences, 2011.
[9] DENNIS J, POURPOINT T, SON S. Ignition of gelled monomethylhydrazine and red fuming nitric acid in an impinging jet apparatus:AIAA-2011-5706[R]. Reston, VA:AIAA, 2011.
[10] VARMA M, JYOTI B V S. Ignition and combustion studies of heterogeneous UDMH-RFNA gel propellants[J]. International Journal of Energetic Materials & Chemical Propulsion, 2011, 10(2):259-275.
[11] CONNELL T L, RISHA G A, YETTER R A, et al. Effect of fuel type on hypergolic ignition of hydrogen peroxide with gelled hydrocarbon fuel:AIAA-2014-3470[R]. Reston, VA:AIAA, 2014.
[12] CONNELL T L, RISHA G A, YETTER R A. Ignition of hydrogen peroxide with gel hydrocarbon fuels[J]. Journal of Propulsion and Power, 2018, 34(1):1-12.
[13] KAMPEN J,ALBERIO F,CIEZKI H.Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J].Aerospace Sciences and Technology, 2007, 11(1):77-83.
[14] PADWAL M B, MISHRA D P. Experimental characterization of gelled jet a1 spray flames[J]. Flow Turbulence & Combustion, 2016, 97(1):295-337.
[15] FENG S, HE B, HE H, et al. Experimental investigation of atomization and combustion of gelled propellant in high-pressure oxidant environment:AIAA-2013-3715[R]. Reston, VA:AIAA,2013.
[16] 杨大力,夏智勋,胡建新,等. 煤油凝胶单液滴燃烧特性试验[J].航空学报, 2016, 37(3):847-853. YANG D L, XIA Z X,HU J X,et al. Experimental study on ignition and combustion characteristic of single kerosene gel droplet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):847-853(in Chinese).
[17] 刘泽军,吴建军,胡小平,等.有机凝胶燃料液滴燃烧过程相分离现象[J].推进技术, 2012, 33(6):934-939. LIU Z J, WU J J, HU X P, et al. Phenomenon of phase separation in combustion process of organic gelled fuel droplets[J]. Journal of Propulsion Technology, 2012, 33(6):934-939(in Chinese).
[18] 张蒙正,徐胜利.超临界环境下煤油和UDMH单液滴燃烧现象[J].火箭推进, 2013, 39(5):1-6. ZHANG M Z, XU S L. Combustion phenomenon of kerosene and UDMH droplets in supercritical environment[J]. Journal of Rocket Propulsion, 2013, 39(5):1-6(in Chinese).
[19] 张蒙正, 李军, 陈炜, 等. 互击式喷嘴燃烧室燃烧效率实验[J]. 推进技术, 2012, 33(1):54-57. ZHANG M Z, LI J, CHEN W, et al. Experiments on combustion efficiency for impinging injector chamber[J]. Journal of Propulsion Technology, 2012, 33(1):54-57(in Chinese).
[20] 庄逢辰. 液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995:2-4. ZHUANG F C. Theory, model and application of spray combustion of liquid rocket engine[M]. Changsha:National University of Defense Technology Press, 1995:2-4(in Chinese).
[21] YUAN T, CHEN C, HUANG B. Comparison of hot-fire and cold-flow observations of nitrogen tetroxide/monomethylhydrazine impinging combustion[J]. AIAA Journal, 2015, 47(10):2359-2367.
[22] 夏益志,洪流,王勇,等. 凝胶自燃推进剂撞击雾化燃烧特性试验研究[J].推进技术, 2019, 40(9):2060-2066. XIA Y Z, HONG L, WANG Y, et al. Experimental study on combustion characteristic of gelled hypergolic bipropellants utilizing impinging injector[J]. Journal of Propulsion Technology, 2019, 40(9):2060-2066(in Chinese).
文章导航

/