有向拓扑条件下针对机动目标的分布式协同制导律设计

  • 董晓飞 ,
  • 任章 ,
  • 池庆玺 ,
  • 李清东
展开
  • 1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083;
    2. 复杂系统控制与智能协同技术重点实验室, 北京 100074;
    3. 北京航空航天大学 飞行器控制一体化技术国防科技重点实验室, 北京 100083;
    4. 北京航空航天大学 大数据科学与脑机智能高精尖创新中心, 北京 100083

收稿日期: 2019-12-13

  修回日期: 2019-12-27

  网络出版日期: 2020-01-16

基金资助

国家自然科学基金(61922008,61973013,61873011,61803014);航空科学基金(20170151001);国防创新特区项目(18-163-00-TS-001-001-34);北京市自然科学基金(4182035)

Distributed cooperative guidance for maneuvering targets with directed conmunication topologies

  • DONG Xiaofei ,
  • REN Zhang ,
  • CHI Qingxi ,
  • LI Qingdong
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    2. Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing 100074, China;
    3. Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100083, China;
    4. Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100083, China

Received date: 2019-12-13

  Revised date: 2019-12-27

  Online published: 2020-01-16

Supported by

National Natural Science Foundation of China (61922008,61973013,61873011,61803014); Aeronautical Science Foundation of China(20170151001); Innovation Zone Project (18-163-00-TS-001-001-34);Beijing Natural Science Foundation (4182035)

摘要

研究了在有向拓扑条件下针对机动目标的分布式协同制导律的设计问题。首先,根据飞行器与目标之间追击过程的几何关系建立制导过程系统模型,针对该模型的非线性问题采用动态反馈线性化方法进行处理。将目标未知机动视为干扰,通过扩张状态观测器进行观测,同时将该估计值用于制导律的设计中,通过直接补偿的方式剔除目标机动对飞行器剩余飞行时间的影响。然后,将所设计的制导律代入到制导模型中,利用一致性分析方法将多飞行器协同制导问题转化为一致性问题,利用极点分析的方法对非一致性子空间的收敛性进行分析,得到协同制导律收敛的充要条件。最后,通过仿真分析的方式对所设计的协同制导律以及制导律的参数选取方法进行分析。

本文引用格式

董晓飞 , 任章 , 池庆玺 , 李清东 . 有向拓扑条件下针对机动目标的分布式协同制导律设计[J]. 航空学报, 2020 , 41(S1) : 723762 -723762 . DOI: 10.7527/S1000-6893.2019.23762

Abstract

This paper studies the distributed cooperative guidance for maneuvering targets with directed communication topologies. First, a guidance system model is established based on the geometric relationship between the aircraft and the target, in which the nonlinear problem is solved by feedback linearization. In this design, the unknown maneuver of the target is observed by the extended state observer, and the estimation of the unknown maneuver of the target is applied to the design of the guidance law. In this process, the influence of the target maneuvering on the time-to-go is eliminated by means of direct compensation. Then, the designed guidance law is brought into the guidance model, transforming the problem of cooperative guidance into the problem of consensus. Next, the necessary and sufficient conditions for the convergence of the designed cooperative guidance law are obtained by conducting the pole analysis. Finally, the designed cooperative guidance law and the method of the parameter selection are analyzed by adopting the simulation analysis.

参考文献

[1] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2):260-266.
[2] ZHANG Y, WANG X, MA G. Impact time control guidance law with large impact angle constraint[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(11):2119-2131.
[3] 孙阳平, 林王鹏, 范作娥, 等. 一种多约束条件下的最优末制导律研究[J]. 兵工自动化, 2013, 32(12):4-7. SUN Y P, LIN W P, FAN Z E, et al. Study on optimal guidance law under multiple-constrained condition[J]. Ordnance Industry Automation, 2013, 32(12):4-7(in Chinese).
[4] 张友根, 张友安, 施建洪, 等.基于双圆弧原理的协同制导律研究[J].海军航空工程学院学报, 2009, 24(5):537-542. ZHANG Y G, ZHANG Y A, SHI J H, et al. Research on cooperative guidance for multi-missiles based on bi-arcs[J]. Journal of Naval Aeronautical and Astronautical University, 2009, 24(5):537-542(in Chinese).
[5] HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2011, 20(6):1436-1449.
[6] KUMAR S R, GHOSE D. Sliding mode control based guidance law with impact time constraints[C]//2013 American Control Conference (ACC). Piscataway:IEEE Press, 2013:5760-5765.
[7] KUMAR S R, GHOSE D. Impact time and angle control guidance[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2015:1-22.
[8] ZHAO E J, WANG S, CHAO T, et al. Multiple missiles cooperative guidance based on leader-follower strategy[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, Piscataway:IEEE Press. 2014:1163-1167.
[9] ZHAO E J, CHAO T, WANG S, et al. An adaptive parameter cooperative guidance law for multiple flight vehicles[C]//Proceedings of AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2015:2709-2718.
[10] QILUN Z, XIWANG D, JIAN C, et al. Coordinated guidance strategy for heterogeneous missiles intercepting hypersonic weapon[C]//Proceedings of the 34th Chinese Control Conference (CCC), 2015:5170-5175.
[11] SUN X, ZHOU R, HOU D, et al. Consensus of leader-followers system of multi-missile with time-delays and switching topologies[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(3):1202-1208.
[12] JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):275-280.
[13] HARRISON G A.Hybrid Guidance law for approach angle and time-of-arrival control[J]. Journal of Guidance Control & Dynamics, 1971, 35(4):1104-1114.
[14] 孙雪娇, 周锐, 吴江, 等.攻击机动目标的多导弹分布式协同制导律[J].北京航空航天大学学报, 2013, 39(10):1403-1407. SUN X J, ZHOU R, WU J, et al. Distributed cooperative guidance law for multiple missiles attacking maneuver target[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10):1403-1407(in Chinese).
[15] 周锐, 孙雪娇, 吴江, 等. 多导弹分布式协同制导与反步滑模控制方法[J].控制与决策, 2014, 29(9):1617-1622. ZHOU R, SUN X J, WU J, et al. Multi-missile distributed cooperative guidance integrating backstepping sliding mode control[J]. Control and Decision, 2014, 29(9):1617-1622(in Chinese).
[16] WANG Y, DONG S, OU L, et al. Cooperative control of multi-missile systems[J]. IET Control Theory & Applications, 2014, 9(3):441-446.
[17] ZHAO J, ZHOU S, ZHOU R. Distributed time-constrained guidance using nonlinear model predictive control[J]. Nonlinear Dynamics, 2016, 84(3):1399-1416.
[18] ZHAO J, ZHOU R. Distributed three-dimensional cooperative guidance via receding horizon control[J]. Chinese Journal of Aeronautics, 2016, 29(4):972-983.
[19] ZHAO Q L, DONG X W, LIANG Z X, et al. Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies[J]. Chinese Journal of Aeronautics, 2017, 30(4):1570-1581.
[20] NIKUSOKHAN M, NOBAHARI H. Closed-form optimal cooperative guidance law against random step maneuver[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1):319-336.
[21] ZHAO J, ZHOU R, DONG Z. Three-dimensional cooperative guidance laws against stationary and maneuvering targets[J]. Chinese Journal of Aeronautics, 2015, 28(4):1104-1120.
[22] ZHAO J, ZHOU R. Unified approach to cooperative guidance laws against stationary and maneuvering targets[J]. Nonlinear Dynamics, 2015, 81(4):1635-1647.
[23] ZHAO Q L, DONG X W, SONG X, et al. Cooperative time-varying formation guidance for leader-following missiles to intercept a maneuvering target with switching topologies[J]. Nonlinear Dynamics, 2019, 95(1):129-141.
[24] ZHOU J, LYU Y, LI Z, et al. Cooperative guidance law design for simultaneous attack with multiple missiles against a maneuvering target[J]. Journal of Systems Science and Complexity, 2018, 31(1):287-301.
[25] SHAFEMAN V, SHIMA T. Cooperative optimal guidance laws for imposing a relative intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(8):1395-1408.
[26] SHAFEMAN V, SHIMA T. Cooperative differential games guidance laws for imposing a relative intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2015, 40(10):2465-2480.
[27] WANG X H, TAN C P. 3-D Impact angle constrained distributed cooperative guidance for maneuvering targets without angular-rate measurements[J]. Control Engineering Practice, 2018, 78:142-159.
[28] REN W, BEARD R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5):665-671.
[29] RAN M P, WANG Q, DONG C Y. Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control[J]. Automatica, 2016, 63:302-310.
[30] ZAHREDDINE Z, ELSHEHAWEY E F. On the stability of a system of differential equations with complex coefficients[J]. Indian Journal of Pure and Applied Mathematics, 1988, 19(10):963-972.
文章导航

/