综述

综合热管理在先进战斗机系统研制中的应用

  • 屠敏 ,
  • 袁耿民 ,
  • 薛飞 ,
  • 王晓明
展开
  • 中国航空工业成都飞机设计研究所, 成都 610091

收稿日期: 2019-11-04

  修回日期: 2019-11-17

  网络出版日期: 2020-01-10

Application of integrated thermal management in development of advanced fighter system

  • TU Min ,
  • YUAN Gengmin ,
  • XUE Fei ,
  • WANG Xiaoming
Expand
  • AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China

Received date: 2019-11-04

  Revised date: 2019-11-17

  Online published: 2020-01-10

摘要

分析了国外先进战斗机的发展情况,对比了需求的变化和发展趋势,阐述了综合热管理思想的内涵。结合中国先进战斗机的研制,论证了综合热管理的必要性和可行性。结合中国实际情况,提出了热收集、热传输、热排散等综合优化设计方法,采用了多路径高效热收集传输手段、基于隐身的热排散等工程实现途径。综合应用基于温度控制的流量调节、内外循环热综合控制、多模式重构技术等手段,实现了热沉与制冷量的管理,满足了不同状态的热管理需求。针对未来的发展方向以及战斗机热管理面临的难题,提出了一定的见解。

本文引用格式

屠敏 , 袁耿民 , 薛飞 , 王晓明 . 综合热管理在先进战斗机系统研制中的应用[J]. 航空学报, 2020 , 41(6) : 523629 -523629 . DOI: 10.7527/S1000-6893.2019.23629

Abstract

The development of foreign advanced fighter is analyzed and the demand changes and development trend are compared. The connotation of integrated thermal management is expounded. Combined with the studies of advanced fighters in China, the necessity and feasibility of integrated thermal management have been demonstrated by the development of the thermal management system. According to the actual situation in China, a design of comprehensive optimization of heat collection, heat transmission, and heat emission is proposed. The efficient heat transmission means and engineering implementation approaches to heat emission and structural integration based on stealth are adopted. The comprehensive application based on temperature controlled flow regulation, comprehensive heat control of internal and external circulating, multi-mode reconstruction technology realizes the management of heat sink and cooling capacity, meeting the requirement of thermal management in different states. This paper also provides opinions on the future development of and challenges of thermal management.

参考文献

[1] YU S, GANEV E.Next generation power and thermal management system[J].SAE International Journal of Aerospace, 2009, 1(1):1107-1121.
[2] KASLUSKY S F, LENTS C E.Aircraft power and thermal management system with electric co-generation:US20100170262[P]. 2010-07-08.
[3] LETLOW J T, JENKINS L C. Development of an integrated environmental control system:SAE 981544[R]. Warrendale:SAE International, 1998.
[4] HOMITZ J, SCARINGE R P, COLE G S, et al.Comparative analysis of thermal management architectures to address evolving thermal requirements of aircraft systems:SAE 2008-01-2905[R].Warrendale:SAE International, 2008.
[5] DOOLEY M, LUI N, NEWMAN R, et al. Aircraft thermal management-heat sink challenge:SAE 2014-01-2193[R]. Warrendale:SAE International, 2014.
[6] RYAN S K. F-15 environmental control system improvements:SAE-901235[R]. Warrendale:SAE International, 1990.
[7] GHANEKAR M. Vapor cycle system for the F-22 raptor:2000-01-2268[R]. Warrendale:SAE International, 2000.
[8] 王云. 航空航天概论[M]. 北京:北京航空航天大学出版社, 2009:156-165. WANG Y. Introduction to aviation[M]. Beijing:Beihang University Press, 2009:156-165(in Chinese).
[9] SPROUSE J. F-22 ECS/TMS qualification test program overview:SAE 972261[R]. Warrendale:SAE International, 1997.
[10] SPROUSE J. F-22 environmental control/thermal management fluid transport optimization:SAE 2000-01-2266[R]. Warrendale:SAE International, 2000.
[11] BEHBAHANI A R, VON MOLL A, ZELLER R, et al. Aircraft integration challenges and opportunities for distributed intelligent control, power, thermal management, and diagnostic and prognostic systems:SAE 2014-01-2161[R]. Warrendale:SAE International, 2014.
[12] SAE Aerospace. Liquid cooling system:SAE AIR1811[R]. Warrendale:SAE International, 2010.
[13] 赵惇殳. 电子设备热设计[M]. 北京:电子工业出版社, 2009:114-116. ZHAO D S. Thermal design of electronic equipment[M]. Beijing:Electronic Industry Press, 2009:114-116(in Chinese).
[14] 王恒斌,张宝霖.国外飞机环境控制系统手册[M]. 北京:航空工业出版社, 1986:284-287. WANG H B, ZHANG B L. Foreign aircraft environmental control system manual[M]. Beijing:Aviation Industry Press, 1986:284-287(in Chinese).
[15] BAIRD D, FERENTINOS J. Application of MIL-C-87252 in F-22 liquid cooling system:SAE 981543[R]. Warrendale:SAE International, 1998.
[16] SCHIHL P, HOOGTERP L, PANGILINAN H. Assessment of JP-8 and DF-2 evaporation rate and cetane number differences on a military diesel engine:SAE 2006-01-1549[R]. Warrendale:SAE International, 2006.
[17] EDWARDS T, MAURICE L Q. Surrogate mixtures to represent complex aviation and rocket fuels[J]. Journal of Propulsion and Power, 2001, 17(2):461-466.
[18] O'CONNELL T C, LUI C, WALIA P, et al. A hybrid economy bleed, electric drive adaptive power and thermal management system for more electric aircraft:SAE 2010-01-1786[R].Warrendale:SAE International, 2010.
[19] 孙友师. 从多电飞机到能量优化飞机——美国空军航空机电领域发展计划浅析[C]//第二届中国航空科学技术大会论文集, 2015. SUN Y S. From multi-electric aircraft to energy optimized aircraft-A brief analysis of the development plan of the aviation electromechanical field of the united states air force[C]//Proceedings of the Second China Aviation Science and Technology Conference, 2015(in Chinese).
[20] 王晓明, 张利珍, 刘永绩, 等. 环路热管发展及其在航空器上的应用现状[J]. 航空工程, 2011(1):26-29. WANG X M, ZHANG L Z, LIU Y J, et al. Development of loop heat pipe and application on aircraft[J]. Aviation Engineering, 2011(1):26-29(in Chinese).
文章导航

/