引射器函数方法在发射井设计中的应用

  • 权辉 ,
  • 谢建 ,
  • 张力 ,
  • 李良
展开
  • 1. 火箭军工程大学导弹工程学院201教研室
    2. 火箭军工程大学

收稿日期: 2019-10-18

  修回日期: 2019-12-26

  网络出版日期: 2020-01-02

基金资助

军内科研

Application of Ejector Function Method in Silo Design

  • QUAN Hui ,
  • XIE Jian ,
  • ZHANG Li ,
  • LI Liang
Expand

Received date: 2019-10-18

  Revised date: 2019-12-26

  Online published: 2020-01-02

摘要

针对发射井优化设计问题,提出了发射井引射器模型和引射器函数求解方法。研究了静压协调函数的性质,分析了发动机总压、发射井横截面积、混合室出口压强变化时的极限工作条件,讨论了p2-p3图、p2-p*图、p2-D3图上引射速度零点、引射面积零点、第一极限点、第三极限点、等压点和等速点的分布。证明了第三极限点是p2-p3图上的驻点,当p3小于第三极限时引射器p2-p3特性曲线为一平行于水平轴的直线段,当p*大于第三极限时引射器p2-p*工作特性曲线沿着最优静压函数曲线发展,当D3小于第三极限时引射器p2-D3工作特性曲线沿着最优静压函数曲线发展。给出了完整的工作特性曲线变化区间。研究结果为发射井和引射器的优化设计提供了重要指导。

本文引用格式

权辉 , 谢建 , 张力 , 李良 . 引射器函数方法在发射井设计中的应用[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2019.23592

Abstract

Aiming at the problem of silo design, the silo ejector model and ejector function were proposed. The properties of the static pressure matching function were studied. The critical conditions when the engine total pressure, the cross-sectional area of the silo and the outlet pressure of the mixing chamber changed were analyzed. The velocity zero points, area zero points, first critical points, third critical points, fixed pressure points and fixed velocity points of the ejector on the p2-p3 chart, p2-p* chart and p2-D3 chart were discussed. It is proved that the third limit point is the stagnation point on the p2-p3 chart; when p3 is smaller than the third limit, the p2-p3 characteristic curve is a straight line parallel to the horizontal axis; when p* is greater than the third limit, the p2-p* characteristic curve develops along the optimal pressure function curve; when D3 is smaller than the third limit, the p2-D3 characteristic curve develops along the optimal pressure function curve. Total range of characteristic curves were given. The results provide important guidance for the design of silos and ejectors.

参考文献

[1] 王飞, 杨树兴, 徐勇. W型地下井发射环境数值模拟与分析[J]. 固体火箭技术, 2007, 30(6): 466-469. [WANG Fei, YANG Shu-xing, XU Yong. Numerical simulation and analysis on W-type silo launching environment [J]. Journal of Solid Rocket Technology, 2007, 30(6): 466-469.]
[2] 周笑飞. 井下发射过程燃气射流流场研究[D]. 北京: 北京理工大学, 2015: 86-94. [ZHAOU Xiao-fei. Study on the silo jet flow field during the launching [D]. Beijing: Beijing Institute of Technology, 2015.]
[3] 谢政. 地下井热发射燃气流场特性研究[D]. 西安:火箭军工程大学,2018. [XIE Zheng. Research on jet flow field of the silo hot launch [D]. Rocket Force University of Engineering, 2018.]
[4] 何昕琛. 旋转轴式可调型引射器性能研究[D].大连理工大学,2018. [HE Xinchen. Performance Study on the rotating shaft adjustable ejector [D]. Dalian University of Technology, 2018.]
[5] 马慧军. 汽水引射器的建模和研究[D].山东大学, 2018. [Ma Huijun. Modeling and investigation of a steam-water ejector [D]. Shandong University, 2018.]
[6] 陈健. 超-超引射器内部流动过程研究[D]. 国防科学技术大学, 2012. [CHEN Jian. Researches on the flow process of the supersonic-supersonic ejector [D]. National University of Defense Technology, 2012.]
[7] 丁绍建, 王海峰, 徐海涛.蒸汽喷射器喷射系数的计算方法分析[J]. 机械制造与自动化, 2017, 46(01): 71-73. [DING Shaojian, WANG Haifeng, XU Haitao. The analysis of calculation methods of steam ejector entrainment ratio [J]. Machine Building & Automation, 2017, 46(01): 71-73.]
[8] 王颖. 几种喷射器设计方法比较和喷射器设计及性能分析一体化软件开发[D]. 广西大学, 2015. [WANG Yin. Comparison of several injector design methods and integrated software development for design and performance analysis of ejector [D]. Guangxi University, 2015.]
[9] Aghazadeh Dokandari D, Setayesh Hagh A, Mahmoudi SMS. Thermodynamic investigation and optimization of novel ejector-expansion CO2/NH3 cascade refrigeration cycles (novel CO2/NH3 cycle) [J]. Int J Refrig, 2014(46): 26–36.
[10] Manjili FE, Yavari MA. Performance of a new two-stage multi-intercooling trans critical CO 2 ejector refrigeration cycle [J]. Appl Therm Eng, 2012(40): 202-209.
[11] Bodys J, Smolka J, Palacz M, Haida M, Banasiak K, Nowak AJ, et al. Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system [J]. Energy, 2016(117): 620-631.
[12] Thongtip T, Aphornratana S. An experimental analysis of the impact of primary nozzle geometries on the ejector performance used in R141b ejector refrigerator [J]. Appl Therm Eng, 2017(110): 89-101.
[13] Yapici R, Ersoy HK, Aktoprako?lu A, Halkaci HS, Yi?it O. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio [J]. Int J Refrig, 2008(31): 1183-1189.
[14] Zhu Y, Cai W, Wen C, Li Y. Numerical investigation of geometry parameters for design of high performance ejectors [J]. Appl Therm Eng, 2009(29): 898-905.
[15] Hemidi A, Henry F, Leclaire S, Seynhaeve JM, Bartosiewicz Y. CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation [J]. Appl Therm Eng, 2009(29): 1523-1531.
[16] Jeon Y, Kim S, Kim D, Chung HJ, Kim Y. Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions [J]. Appl Energy 2017(205): 1059-1067.
[17] Li F, Tian Q, Wu C, Wang X, Lee JM. Ejector performance prediction at critical and subcritical operational modes [J]. Appl Therm Eng, 2017(115): 444-454.
[18] Xing M, Yu J, Liu X. Thermodynamic analysis on a two-stage transcritical CO2 heat pump cycle with double ejectors [J]. Energy Convers Manage, 2014(88): 677-683.
[19] Engines J. Numerical and experimental flow visualizations of the mixing process inside an induced air ejector [J]. Int J Turbo Jet Eng, 2002(78): 71-78.
[20] Zhu Y, Jiang P. Experimental and analytical studies on the shock wave length in convergent and convergent-divergent nozzle ejectors [J]. Energy Convers Manage, 201(88): 907-914.
[21] Zhang H, Wang L, Jia L, Wang X. Assessment and prediction of component efficiencies in supersonic ejector with friction losses [J]. Appl Therm Eng, 2018(129): 618-627.
[22] Rao SMV, Jagadeesh G. Observations on the non-mixed length and unsteady shock motion in a two dimensional supersonic ejector [J]. Phys Fluids, 2014(26).
[23] Desevaux P, Mellal A, Alves de Sousa Y. Visualization of secondary flow choking phenomena in a supersonic air ejector [J]. J Vis, 2004(7): 249-256.
[24] Zhu Y, Wang Z, Yang Y, Jiang P-X. Flow visualization of supersonic two-phase transcritical flow of CO2 in an ejector of a refrigeration system [J]. Int J Refrig, 2017(74): 354-361.
[25] 廖达雄, 等. 气体引射器原理及设计[M]. 北京:国防工业出版社,2018. 09.
[26] 索科洛夫,津格尔. 喷射器[M]. 黄秋云(译). 北京:科学出版社,1977.
文章导航

/