[1] 王荣, 闫溟, 白鹏, 等. 飞翼无人机平面外形气动隐身优化设计[J]. 航空学报, 2017, 38(S1):77-84. WANG R, YAN M, BAI P, et al. Optimization design of aerodynamics and stealth for a flying-wing UAV platf-orm[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):77-84(in Chinese).
[2] 蒋相闻, 招启军, 孟晨. 直升机旋翼桨叶外形对雷达特征信号的影响[J]. 航空学报, 2014, 35(11):3123-3136. JIANG X W, ZHAO Q J, MENG C. Effect of helicopter rotor blade shape on its radar signal characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3123-3136(in Chinese).
[3] 阮颖铮. 雷达截面与隐身技术[M]. 北京:国防工业出版社, 1998:115-120. RUAN Y Z. Radar cross section and stealth technol-ogy[M]. Beijing:National Defense Industry Press, 1998:115-120(in Chinese).
[4] 桑建华. 飞行器隐身技术[M]. 北京:航空工业出版社, 2012:321-334. SANG J H. Low-observable technologies of aircraft[M]. Beijing:Aviation Industry Press, 2012:321-334(in Chinese).
[5] 王明亮, 高正红, 夏露. 气动与隐身性能计算精度对飞行器设计的影响[J]. 飞行力学,2009, 27(6):14-17. WANG M L, GAO Z H, XIA L. Influence of aerodynamic and stealth performance conputation precision on aircraft optimization design[J]. Flight Dynamics, 2009, 27(6):14-17(in Chinese).
[6] 张彬乾, 罗烈, 陈真利, 等. 飞翼布局隐身翼型优化设计[J]. 航空学报, 2014, 35(4):957-967. ZHANG B Q, LUO L, CHEN Z L, et al. On stealth airfoil design for flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):957-967(in Chinese).
[7] HARRINGTON R F, HARRINGTON J L. Field computation by moment methods[M]. New York:Wiley-IEEE Press,1993:15-20.
[8] COIFMAN R, ROKHLIN V, WANDZURA S. The fast multipole method for the wave equation:A pedestrian prescription[J]. IEEE Antennas and Propagation Magazine, 1993, 35(3):7-12.
[9] 高正红, 夏露, 李天, 等. 飞行器气动与隐身性能一体化优化设计方法研究[J]. 飞机设计, 2003(3):1-5. GAO Z H, XIA L, LI T, et al. Investigation into collaborative optimization design techniques of aircraft aerodynamics and stealth performances[J]. Aircraft Design, 2003(3):1-5(in Chinese).
[10] 夏露, 张欣, 杨梅花, 等. 飞翼布局翼型气动隐身综合设计[J]. 西北工业大学学报, 2017, 35(5):821-826. XIA L, ZHANG X, YANG M H, et al. Airfoil aerodynamic stealth integrated design for a flying wing configuration[J]. Journal of Northwestern Polytechnical University, 2017, 35(5):821-826(in Chinese).
[11] ZINGG D W, NEMEC M, PULLIAM T H. A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization[J]. European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique, 2008, 17(1-2):103-126.
[12] 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4):554-562. HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4):554-562(in Chinese).
[13] 黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5):101-112. HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):101-112(in Chinese).
[14] 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超音速公务机声爆优化[J]. 航空学报, 2019, 40(5):122505. HUANG J T, ZHANG Y D, GAO Z H, et al. The supersonic jet sonicboom optimization based on flow/sonicboom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122505(in Chinese).
[15] BONDESON A, YANG Y, WEINERFELT P. Shape optimization for radar cross sections by a gradient method[J]. International Journal for Numerical Methods in Engineering, 2004, 61(5):687-715.
[16] WANG L, ANDERSON W K. Adjoint-based shape optimization for electromagnetic problems using discontinuous galerkin methods[J]. AIAA Journal, 2011, 49(6):1302-1305.
[17] ZHOU L, HUANG J T, GAO Z H. Radar cross section gradient calculation based on adjoint equation of method of moment[C]//Asia-Pacific International Symposium on Aerospace Technology. Singapore:Springer, 2018:1427-1445.
[18] SONG J, CHEW W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering[J]. Microwave and Optical Technology Letters, 1995, 10(1):14-19.
[19] RAO S M, WILTON D R, GLISSON A W. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas & Propagation, 1982, 30(3):409-418.
[20] 张玉, 赵勋旺, 陈岩. 计算电磁学中的超大规模并行矩量法[M]. 西安:西安电子科技大学出版社, 2016:30-45. ZHANF Y, ZHAO X W, CHEN Y. Hyper-large-scale parallel method of moment in computational electromagnetics[M]. Xi'an:Xidian University Press, 2016:30-45(in Chinese).
[21] 麻军. 矩量法及其并行计算在粗糙面和目标电磁散射中的应用[D]. 西安:西安电子科技大学, 2009:25-30. MA J. The application of the method of moment and its parallel computation in EM-scattering from the rough surface and the target[D]. Xi'an:Xidian University, 2009:25-30(in Chinese).
[22] 张玉. 电磁场并行计算[M]. 西安:西安电子科技大学出版社, 2006:37-47. ZHANG Y. Parallel computation in electromagnetics[M]. Xi'an:Xidian University Press, 2006, 37-47(in Chinese).
[23] 聂在平, 胡俊, 姚海英, 等. 用于复杂目标三维矢量散射分析的快速多极子方法[J]. 电子学报, 1999, 27(6):104-109. NIE Z P, HU J, YAO H Y, et al. The fast multipole method for vector analysis of scattering from 3-dimensional objects with complex structure[J]. Acta Electronica Sinica, 1999, 27(6):104-109(in Chinese).
[24] KNOTT E F, SHAEFFER J F, TULEY M T. Radar cross section[M]. Raleigh:SciTech Publishing, 2004:270-274.
[25] VAN DER VORST H A. Bi-cgstab:A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1992, 13(2):631-644.
[26] GIBSON W C. The method of moments in electromagnetics[M]. New York:Chapman and Hall/CRC, 2007:205-220.
[27] WOO A C, WANG H T G, SCHUH M J, et al. Em programmer's notebook-benchmark radar targets for the validation of computational electromagnetics programs[J]. IEEE Antennas and Propagation Magazine, 1993; 35(1):84-89.
[28] MORRIS A, ALLEN C S, RENDALL T. Domain-element method for aerodynamic shape optimization applied to modern transport wing[J]. AIAA Journal, 2009, 47(7):1647-1659.
[29] RENDALL T C, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249.