[1] 宋怡然,申超,李东兵. 美国分布式低成本无人机集群研究进展[J]. 飞航导弹,2016(8):17-22. SONG Y R, SHEN C, LI D B. A review of the research on distributed, low-cost system for unmanned aerial vehicles (UAVs) swarm of the United States[J]. Aerodynamic Missile Journal, 2016(8):17-22(in Chinese).
[2] 陈晶. 解析美海军低成本无人机蜂群技术[J]. 无人机,2016(1):24-26. CHEN J. The US navy's low-cost swarming drone technology[J]. Unmanned Vehicles, 2016(1):24-26(in Chinese).
[3] REYNOLDS C W. Flocks, herds, and schools:A distributed behavioral model[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4):25-34.
[4] VICSEK T, CZIROK A, JACOB E B, et al. Novel type of phase transitions in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6):1226.
[5] VICSEK T. A question of scale[J]. Nature, 2001, 411(6836):421.
[6] JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6):988-1001.
[7] GAZI V, PASSINO K M. Stability analysis of swarms[J]. IEEE Transactions on Automatic Control, 2003, 48(4):692-697.
[8] OLFATI-SABER R. Flocking for multi-agent dynamic systems:Algorithms and theory[J]. IEEE Transactions on Automatic Control, 2006, 51(3):401-420.
[9] CUCKER F, SMALE S. Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52(5):852-862.
[10] 吕娜,刘创,陈柯帆,等. 一种面向航空集群的集中控制式网络部署方法[J]. 航空学报, 2018, 39(7):321961. LYU N, LIU C, CHEN K F, et al. A method for centralized control network deployment of aeronautic swarm[J]. Acta Aerodynamic et Astronautica Sinica, 2018, 39(7):321961(in Chinese).
[11] JING G, ZHENG Y, WANG L. Group flocking of multiple mobile agents[C]//33rd Chinese Control Conference, 2014:1156-1161.
[12] CHEN Y, CHANG S. An agent-based simulation for multi-UAVs coordinative sensing[J]. International Journal of Intelligent Computing and Cybernetics, 2008, 1(2):269-284.
[13] CUCKER F, DONG J. Avoiding collisions in flocks[J]. IEEE Transactions on Automatic Control, 2010, 55(5):1238-1243.
[14] BAYEZIT I, FIDAN B. Distributed cohesive motion control of flight vehicle formations[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12):5763-5772.
[15] RAHIMI R, ABDOLLAHI F, NAQSHI K. Time-varying formation control of a collaborative heterogeneous multi agent system[J]. Robotics and Autonomous Systems, 2014, 62(12):1799-1805.
[16] DONG X, YU B, SHI Z, et al. Time-varying formation control for unmanned aerial vehicles:Theories and applications[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1):340-348.
[17] 周绍磊,祁亚辉,张雷,等. 切换拓扑下无人机集群系统时变编队控制[J]. 航空学报, 2017, 38(4):320452. ZHOU S L, QI Y H, ZHANG L, et al. Time-varying formation control of UAV swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):320452(in Chinese).
[18] OYEKAN J. Bio-Inspired vision-based leader-follower formation flying in the presence of delays[J]. Robotics, 2016, 5(3):18.
[19] KOWNACKI C. Multi-UAV flight using virtual structure combined with behavioral approach[J]. Acta Mechanica et Automatica, 2016,10(2):92-99.
[20] QIU H, DUAN H. Multiple UAV distributed close formation control based on in-flight leadership hierarchies of pigeon flocks[J]. Aerospace Science and Technology, 2017, 70:471-486.
[21] ALFEO A L, CIMINO M G C A, DE F N, et al. Design and simulation of the emergent behavior of small drones swarming for distributed target localization[J]. Journal of Computational Science, 2018, 29:19-33.
[22] JIA Y N, LI Q, ZHANG W C. A distributed cooperative approach for unmanned aerial vehicle flocking[J]. Chaos, 2019, 29(4):043118.
[23] JIA Y N, YANG Y H, LI Q, et al. Aerial escort task using networked miniature unmanned aerial vehicles[J/OL]. (2019-08-30)[2019-09-11].International Journal of Control, https://www_tandfonline.xilesou.top/doi/abs/10.1080/00207179.2019.1661522.
[24] BONABEAU E, DORIGO M, THERAULAZ G. Swarm intelligence-from natural to artificial systems[M]. Oxford:Oxford University Press, 1999.
[25] KUMAR V. The 5S's of aerial robotics:Small, smart, safe, speedy and swarming[C]//CCF-GAIR, 2016.
[26] HEADQUARTERS. United States air force unmanned aircraft systems flight plan 2016-2036[R]. Washington, D.C.:USAF, 2009.
[27] CAMBONE S A. Unmanned aircraft systems roadmap 2005-2030[R]. Washington, D.C.:Office of the Secretary of Defense, 2005.
[28] BALLERINI M, CABIBBO N, CANDELIER R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance:Evidence from a field study[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4):1232-1237.
[29] COUZIN I D, KRAUSE J, FRANKS N R, et al. Effective leadership and decision-making in animal groups on the move[J]. Nature, 2005, 433(7025):513-516.
[30] MEHES E, VICSEK T. Collective motion of cells:From experiments to models[J]. Integrative Biology, 2014, 6(9):831-854.
[31] JIANG L, GIUGGIOLI L, PERNA A, et al. Identifying influential neighbors in animal flocking[J]. PloS Computational Biology, 2017, 13(11):e1005822.
[32] ALFEO A L, CIMINO M G C A, DE F, et al. Swarm coordination of mini-UAVs for target search using imperfect sensors[J]. Intelligent Decision Technologies, 2018, 12(2):149-162.
[33] ANDREA C, ALESSIO C, IRENE G, et al. Scale-free correlations in starling flocks[J]. Proceedings of the National Academy of Sciences of the National Academy of Sciences of the United States of America, 2010, 107(26):11865-11870.
[34] CISZAK M, COMPARINI D, MAZZOLAI B, et al. Swarming behavior in plant roots[J]. PloS One, 2012, 7(1):e29759.
[35] DEUTSCH A, THERAULAZ G, VICSEK T. Collective motion in biological systems[J]. Interface Focus, 2012, 2(6):689-692.
[36] LI L, XIAO W B, QIU W, et al. New flocking models apply for UAV formation[J]. Journal of Physics:Conference Series, 2019, 1169:012025.
[37] BENEDETTI M, DURSO F, FORTINO G, et al. A fault-tolerant self-organizing flocking approach for UAV aerial survey[J]. Journal of Network and Computer Applications, 2017, 96:14-30.
[38] BAHLOUL N E H, BOUDJIT S, ABDENNEBI M, et al. A flocking-based on demand routing protocol for unmanned aerial vehicles[J]. Journal of Computer Science and Technology, 2018, 33(2):263-276.
[39] DUAN H B, LI P. Autonomous control for unmanned aerial vehicle swarms based on biological collective behaviors[J]. Science & Technology Review, 2017, 35(7):17-25.
[40] ZHANG T J. Unmanned aerial vehicle formation inspired by bird flocking and foraging behavior[J]. International Journal of Automation and Computing, 2018, 15(4):402-416.
[41] QUINTERO S, COLLINS G, HESPANHA J. Flocking with fixed-wing UAVs for distributed sensing:A stochastic optimal control approach[C]//Proceedings of the American Control Conference, 2013:2025-2031.
[42] ZENKEVICH S L, GALUSTYAN N K. Decentralized control of a quadrocopter swarm[J]. Mechatronics, Automation and Control, 2016, 17(11):774-82.
[43] QIU H X, DUAN H B. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments[J]. ISA Transactions, 2017, 71(1):93-102.
[44] JIA Y N, LI Q, QIU S Q. Distributed leader-follower flight control for large-scale clusters of small unmanned aerial vehicles[J]. IEEE Access, 2018, 6:32790-32799.
[45] MAO X, ZHANG H B, WANG Y H. Flocking of quad-rotor UAVs with fuzzy control[J]. ISA Transactions, 2018, 74:185-193.
[46] ZHAO W, CHU H, ZHANG M, et al. Flocking control of fixed-wing UAVs with cooperative obstacle avoidance capability[J]. IEEE Access, 2019, 7:17798-17808.
[47] DAI F, CHEN M, WEI X, et al. Swarm intelligence-inspired autonomous flocking control in UAV networks[J]. IEEE Access, 2019, 7:61786-61796.
[48] SHEN J. Cucker-smale flocking under hierarchical leadership[J]. Society for Industrial and Applied Mathematics, 2006, 68(3):694-719.
[49] LI B, LI J, HUANG K W. Modeling and flocking consensus analysis for large-scale UAV swarms[J]. Mathematical Problems in Engineering, 2013, 2013:368369.
[50] VIRÁGH C, VASARHELYI G, TARCAI N, et al. Flocking algorithm for autonomous flying robots[J]. Bioinspiration and Biomimetics, 2014, 9(2):025012.
[51] HUNG S, GIVIGI S N. A Q-learning approach to flocking with UAVs in a stochastic environment[J]. IEEE Transactions on Cybernetics, 2017, 47(1):186-197.
[52] VASARHELYI G, VIRAGH C, SOMORJAI G, et al. Optimized flocking of autonomous drones in confined environments[J]. Science Robotics, 2018, 3(20):eaat3536.
[53] PARANJAPE A A, CHUNG S, KIM K, et al. Robotic herding of a flock of birds using an unmanned aerial vehicle[J]. IEEE Transactions on Robotics, 2018, 34(4):901-915.
[54] GARCIA G, KESHMIRI S. Biologically inspired trajectory generation for swarming UAVs using topological distances[J]. Aerospace Science and Technology, 2016, 54:312-319.
[55] KOWNACKI C, OLDZIEJ D. Fixed-wing UAVs flock control through cohesion and repulsion behaviors combined with a leadership[J/OL]. (2016-01-12)[2017-05-15]. International Journal of Advanced Robotic Systems, https://doi.org/10.5772/62249.
[56] HE L L, BAI P, LIANG X L, et al. Feedback formation control of UAV swarm with multiple implicit leaders[J]. Aerospace Science and Technology, 2018, 72:327-334.
[57] CHEN M, DAI F, WANG H, et al. DFM:A distributed flocking model for UAV swarm networks[J]. IEEE Access, 2018, 6:69141-69150.
[58] BEN-ASHER P G Y, FELDMAN S, FELDMAN M. Distributed decision and control for cooperative UAVs using ad hoc communication[J]. IEEE Transactions on Control System Technology, 2008, 16(3):511-516.
[59] KHARE V R, WANG F Z, WU S, et al. Ad-hoc network of unmanned aerial vehicle swarms for search and destroy tasks[C]//4th International IEEE Conference on Intelligent Systems. Piscataway:IEEE Press, 2008:665-672.
[60] HAUERT S, LEVEN S, VARGA M, et al. Reynolds flocking in reality with fixed-wing robots:Communication range vs maximum turning rate[C]//IEEE/RSJ International Conference on Intelligent Robot System, 2011:5015-5020.
[61] KIM S W, SEO S W. Cooperative unmanned autonomous vehicle control for spatially secure group communications[J]. IEEE Journal on Selected Area in Communications, 2012, 30(5):870-882.
[62] LUO F, JIANG C, DU J, et al. A distributed gateway selection algorithm for UAV networks[J]. IEEE Transactions on Emerging Topics in Computing, 2015, 3(1):22-33.
[63] BAYEZIT I, FIDAN B. Distributed cohesive motion control of flight vehicle formations[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12):5763-5772.
[64] CAO W, XU W. A new multi-UAV cooperation method[C]//9th International Symposium on Computational Intelligence and Design, 2016:231-234.
[65] JIA Y N. Swarming coordination of multiple unmanned aerial vehicles in three-dimensional space[C]//AIAA Modeling and Simulation Technologies Conference. Reston:AIAA, 2016.
[66] CIARLETTA L, GUENARD A, PRESSE Y, et al. Simulation and platform tools to develop safe flock of UAVs:A cps application-driven research[C]//International Conference on Unmanned Aircraft Systems, 2014:95-102.
[67] CORNER J J, LAMONT G B. Parallel simulation of UAV swarm scenarios[C]//Proceedings of the Winter Simulation Conference, 2004:363-371.
[68] MENDEZ L, GIVIGI S N, SCHWARTZ H M, et al. Validation of swarms of robots:Theory and experimental results[C]//7th International Conference on System of Systems Engineering, 2012:332-337.
[69] SASKA M. Mav-swarms:Unmanned aerial vehicles stabilized along a given path using onboard relative localization[C]//International Conference on Unmanned Aircraft Systems, 2015:894-903.
[70] GIL A E, PASSINO K M, GANAPATHY S. Cooperative task scheduling for networked uninhabited air vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 4(2):561-581.
[71] JOELIANTO E, SAGALA A. Swarm tracking control for flocking of a multi-agent system[C]//IEEE Conference on Control, Systems and Industrial Informatics, 2012:75-80.
[72] VÁSÁRHELYI G, VIRÁGH C, SOMORJAI G, et al. Outdoor flocking and formation flight with autonomous aerial robots[C]//IEEE/RSJ International Conference on Intelligent Robot Systems. Piscataway:IEEE Press, 2014:3866-3873.
[73] BARABASI A-L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[74] FANG H, WEI Y, CHEN J, et al. Flocking of second-order multiagent systems with connectivity preservation based on algebraic connectivity estimation[J]. IEEE Transactions on Cybernetics, 2017, 47(4):1067-1077.
[75] SOORKI M N, TAVAZOEI M S. Adaptive robust control of fractional-order swarm systems in the presence of model uncertainties and external disturbances[J]. IET Control Theory & Applications, 2018, 12(7):961-969.
[76] SAHU B K, SUBUDHI B. Flocking control of multiple AUVs based on fuzzy potential functions[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5):2539-2551.
[77] YAZDANI S, HAERI M, SU H. Sampled-data leader-follower algorithm for flocking of multi-agent systems[J]. IET Control Theory and Applications, 2019, 13(5):609-619.
[78] ZHAN J, LI X. Flocking of multi-agent systems via model predictive control based on position-only measurements[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1):377-385.
[79] ISKANDARANI M, GIVIGI S N, FUSINA G, et al. Unmanned aerial vehicle formation flying using linear model predictive control[C]//8th Annual IEEE System Conference, 2014:18-23.
[80] ZHANG H, LIU B, CHENG Z, et al. Model predictive flocking control of the cucker-smale multi-agent model with input constraints[J]. IEEE Transactions on Circuits and Systems I, 2016, 63(8):1265-1275.
[81] DONG J, QIU L. Flocking of the cucker-smale model on general digraphs[J]. IEEE Transactions on Automatic Control, 2017, 62(10):5234-5239.
[82] ZHANG H, CHENG Z, CHEN G, et al. Model predictive flocking control for second-order multi-agent systems with input constraints[J]. IEEE Transactions on Circuits and Systems I, 2015, 62(6):1599-1606.
[83] RAO S, GHOSE D. Sliding mode control-based autopilots for leaderless consensus of unmanned aerial vehicles[J]. IEEE Transactions on Control System Technology, 2014, 22(5):1964-1972.
[84] JIA Y N, VICSEK T. Modeling hierarchical flocking[J]. New Journal of Physics, 2019, 21:093048.
[85] JIA Y N, WANG L. Decentralized formation flocking for multiple non-holonomic agents[C]//6th IEEE International Conference on Cybernetics and Intelligent Systems. Piscataway:IEEE Press, 2013:100-105.
[86] BENNO L, DEMIAN L. The rotating vicsek model:Pattern formation and enhanced flocking in chiral active matter[J]. Physical Review Letters, 2016, 119(5):058002.