[1] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1):522759. CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522759(in Chinese).
[2] WALSH M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal, 1983, 21(4):485-486.
[3] WALSH M J. Effect of detailed surface geometry on riblet drag reduction performance[J]. AIAA Journal, 1990, 27(6):572-573.
[4] WALSH M J, WILLIAM L S, CATHERINE B M. Riblet drag at flight conditions[J]. Journal of Aircraft, 1989, 26(6):570-575.
[5] SUNDARAM S, VISWANATH P R, RUDRAKUMAR S. Studies on turbulent drag reduction on a NACA 0012 airfoil using riblets:National Aerospace Laboratories Report PD-EA-9401[R]. India:National Aerospace Laboratories, 1994.
[6] SUNDARAM S, VISWANATH P R, RUDRAKUMAR S. Viscous drag reduction using riblets on a NACA0012 airfoil to moderate incidence[J]. AIAA Journal, 1996, 34(4):676-682.
[7] SUBASHCHANDAR N, RAJEEV K, SUNDARAM S. Drag reduction due to riblets on NACA 0012 airfoil at higher angles of attack:National Aerospace Laboratories Report PD-EA-9504[R]. India:National Aerospace Laboratories, 1995.
[8] SUBASHCHANDAR N, RAJEEV K, SUNDARAM S. Drag reduction due to riblets on a GAW(2) airfoil:National Aerospace Laboratories Report PD-EA-9601[R]. India:National Aerospace Laboratories, 1996.
[9] SUBASHCHANDAR N, RAJEEV K, SUNDARAM S. Drag reduction due to riblets on a GAW(2) airfoil[J]. Journal of Aircraft, 1999, 36(5):890-892.
[10] COUTSTOLS E, SCHMITT V. Synthesis of experimental riblet studies in transonic conditions[M]//COUTSTOLS E. Turbulence control by passive means. Amsterdam:Springer Netherlands, 1990:123-140.
[11] 胡海豹, 宋保维, 刘占一, 等. 沟槽表面边界层湍动能分布规律[J]. 航空学报, 2009, 30(10):1823-1828. HU H B, SONG B W, LIU Z Y, et al. Research on characteristics of turbulence kinetic energy in boundary layer over riblet surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1823-1828(in Chinese).
[12] WANG J J, LAN S L, CHEN G. Experimental study on the turbulent boundary layer flow over riblets surface[J]. Fluid Dynamics Research, 2000, 27(4):217-229.
[13] 王晋军, 陈光. 沟槽面湍流边界层近壁区拟序结构实验研究[J]. 航空学报, 2001, 22(5):400-405. WANG J J, CHEN G. Experimental studies on the near wall turbulent coherent structures over riblets surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(5):400-405(in Chinese).
[14] CUI G Y, PAN C, WU D, et al. Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer[J]. Chinese Journal of Aeronautics, 2019, 32(11):2433-2442.
[15] ZHANG Y F, CHEN H X, FU S, et al. Numerical study of an airfoil with riblets installed based on large eddy simulation[J]. Aerospace Since and Technology, 2018, 78:661-670.
[16] 周健, 欧平, 刘沛清, 等. 沟槽面湍流减阻数值评估方法[J]. 航空学报, 2017, 38(4):120263. ZHOU J, OU P, LIU P Q, et al. Numerical evaluation method of turbulence drag reduction with riblets[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120263(in Chinese).
[17] CHOI H, MOIN P, KIM J. Direct numerical simulation of turbulent over riblets[J]. Journal of Fluid Mechanics, 1993, 255:503-539.
[18] CHU C D, KARNIADAKIS E G. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces[J]. Journal of Fluid Mechanics, 1993, 250:1-42.
[19] ZHANG J, JACKSON T L. A high-order incompressible flow solver with WENO[J]. Journal of Computational Physics, 2009, 228(7):2426-2442.
[20] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212
[21] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
[22] KIM J, MOIN P, MOSER R D. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. Journal of Fluid Mechanics, 1987, 177:133-166.
[23] HARTEN A, OSHER S. Uniformly high-order accurate non-oscillatory schemes I[J]. SIAM Journal of Numerical Analysis, 1987, 24(2):279-309.
[24] 傅德薰, 李新亮, 马延文, 等. 可压缩湍流直接数值模拟[M]. 北京:科学出版社, 2010:178-179. FU D X, LI X L, MA Y W, et al. Direct numerical simulation of compressible turbulence[M]. Beijing:Science Press, 2010:178-179(in Chinese).
[25] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2):405-452.
[26] KIM J, MOIN P. Application of a fractional-step method to incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1985, 59(2):308-323.
[27] HU F Q, HUSSAINI M Y, MANTHEY J L. Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1996, 124(1):177-191.
[28] GOLDSTEIN D, HANDLER R, SIROVICH L. Direct numerical simulation of turbulent flow over a modeled riblet covered surface[J]. Journal of Fluid Mechanics, 1995, 302:333-376.
[29] JIMÉNEZ J, MOIN P. The minimal flow unit in near-wall turbulence[J]. Journal of Fluid Mechanics, 1991, 225:213-240.
[30] BECHERT D W, BRUSE M, HAGE W V, et al. Experiments on drag reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338:59-87
[31] WU D, WANG J J, CUI G Y, et al. Effects of surface shapes on properties of turbulent/non-turbulent interface in turbulent boundary layers[J]. Science China-Technological Sciences, 2020, 63:214-222.
[32] 张兆顺, 崔桂香, 许春晓, 等. 湍流理论与模拟[M]. 北京:清华大学出版社, 2017:10-13. ZHANG Z S, CUI G X, XU C X, et al. Theory and modeling of turbulence[M]. Beijing:Tsinghua University Press, 2017:10-13(in Chinese).
[33] 崔光耀, 潘翀, 高琪, 等. 沟槽方向对湍流边界层流动结构影响的实验研究[J]. 力学学报, 2017, 49(6):1201-1212. CUI G Y, PAN C, GAO Q, et al. Flow structure in the turbulent boundary layer over directional riblets surfaces[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6):1201-1212(in Chinese).