流体力学与飞行力学

沿流向微结构沟槽流场直接数值模拟

  • 李超群 ,
  • 李易 ,
  • 张晨曦 ,
  • 唐硕
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 陕西省空天飞行器设计重点实验室, 西安 710072

收稿日期: 2019-11-04

  修回日期: 2019-11-20

  网络出版日期: 2019-12-19

基金资助

装备预研项目;装备预研航天科技联合基金

Direct numerical simulation of flow field over streamwise micro riblets

  • LI Chaoqun ,
  • LI Yi ,
  • ZHANG Chenxi ,
  • TANG Shuo
Expand
  • 1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Shaanxi Aerospace Flight Vehicle Design Key Laboratory, Xi'an 710072, China

Received date: 2019-11-04

  Revised date: 2019-11-20

  Online published: 2019-12-19

Supported by

Equipment Pre-research Project; United Project of Equipment Pre-research and Aerospace Science and Technology

摘要

采用高阶格式对覆有V型对称沟槽表面的槽道湍流流动进行了直接数值模拟,数值方法采用有限差分法。为精确求解沟槽壁面的湍流流动,对流项的离散采用7阶WENO(Weighted Essentially Non-Oscillatory)格式;时间推进采用分数步时间推进与低耗散、低色散Runge-Kutta方法(LDDRK方法)结合的格式;黏性项的离散采用6阶中心格式。模拟的雷诺数为5 000(基于槽道高度的1/2),计算的沟槽宽度范围为13~44,沟槽斜壁与水平面夹角为60°。数值模拟结果表明,与平板相比,沿流向沟槽表面的阻力最高降低了9%。数据分析发现出现减阻效果时,沟槽减少了近壁面处顺流向涡的数目,并且减阻机理与微沟槽阻碍大尺度流向涡与沟槽壁面的直接碰撞,使沟槽表面湍流脉动得到削弱有关。

本文引用格式

李超群 , 李易 , 张晨曦 , 唐硕 . 沿流向微结构沟槽流场直接数值模拟[J]. 航空学报, 2020 , 41(11) : 123628 -123628 . DOI: 10.7527/S1000-6893.2019.23628

Abstract

To simulate the flow over the streamwise micro riblets of symmetric V shape, this paper applies a model of channel flow where the lower wall is mounted with riblets and the upper one is flat. The finite difference method is employed as the numerical method. To accurately obtain the flow of riblets, the 7th WENO (Weighted Essentially Non-Oscillatory) scheme, the fractional-step method combined with the Low-Dissipation and Dispersion Runge-Kutta scheme (LDDRK method) and the 6th central scheme are applied to the discretization of the space, the time advancing and viscous terms. In this paper, the Reynolds number is 5 000 (based on the half width of the channel), the range of the size of the riblets is from 13 to 44 and the inclination of the slope of riblets is 60°. Simulation results illustrate that the maximum of drag reduction is 9% and indicate that in the drag-reducing cases, the riblets can prevent the large-scale streamwise vortices from interacting with the surface directly, weakening the turbulent oscillation and decreasing the number of the streamwise vortices near riblet wall.

参考文献

[1] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1):522759. CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522759(in Chinese).
[2] WALSH M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal, 1983, 21(4):485-486.
[3] WALSH M J. Effect of detailed surface geometry on riblet drag reduction performance[J]. AIAA Journal, 1990, 27(6):572-573.
[4] WALSH M J, WILLIAM L S, CATHERINE B M. Riblet drag at flight conditions[J]. Journal of Aircraft, 1989, 26(6):570-575.
[5] SUNDARAM S, VISWANATH P R, RUDRAKUMAR S. Studies on turbulent drag reduction on a NACA 0012 airfoil using riblets:National Aerospace Laboratories Report PD-EA-9401[R]. India:National Aerospace Laboratories, 1994.
[6] SUNDARAM S, VISWANATH P R, RUDRAKUMAR S. Viscous drag reduction using riblets on a NACA0012 airfoil to moderate incidence[J]. AIAA Journal, 1996, 34(4):676-682.
[7] SUBASHCHANDAR N, RAJEEV K, SUNDARAM S. Drag reduction due to riblets on NACA 0012 airfoil at higher angles of attack:National Aerospace Laboratories Report PD-EA-9504[R]. India:National Aerospace Laboratories, 1995.
[8] SUBASHCHANDAR N, RAJEEV K, SUNDARAM S. Drag reduction due to riblets on a GAW(2) airfoil:National Aerospace Laboratories Report PD-EA-9601[R]. India:National Aerospace Laboratories, 1996.
[9] SUBASHCHANDAR N, RAJEEV K, SUNDARAM S. Drag reduction due to riblets on a GAW(2) airfoil[J]. Journal of Aircraft, 1999, 36(5):890-892.
[10] COUTSTOLS E, SCHMITT V. Synthesis of experimental riblet studies in transonic conditions[M]//COUTSTOLS E. Turbulence control by passive means. Amsterdam:Springer Netherlands, 1990:123-140.
[11] 胡海豹, 宋保维, 刘占一, 等. 沟槽表面边界层湍动能分布规律[J]. 航空学报, 2009, 30(10):1823-1828. HU H B, SONG B W, LIU Z Y, et al. Research on characteristics of turbulence kinetic energy in boundary layer over riblet surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1823-1828(in Chinese).
[12] WANG J J, LAN S L, CHEN G. Experimental study on the turbulent boundary layer flow over riblets surface[J]. Fluid Dynamics Research, 2000, 27(4):217-229.
[13] 王晋军, 陈光. 沟槽面湍流边界层近壁区拟序结构实验研究[J]. 航空学报, 2001, 22(5):400-405. WANG J J, CHEN G. Experimental studies on the near wall turbulent coherent structures over riblets surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(5):400-405(in Chinese).
[14] CUI G Y, PAN C, WU D, et al. Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer[J]. Chinese Journal of Aeronautics, 2019, 32(11):2433-2442.
[15] ZHANG Y F, CHEN H X, FU S, et al. Numerical study of an airfoil with riblets installed based on large eddy simulation[J]. Aerospace Since and Technology, 2018, 78:661-670.
[16] 周健, 欧平, 刘沛清, 等. 沟槽面湍流减阻数值评估方法[J]. 航空学报, 2017, 38(4):120263. ZHOU J, OU P, LIU P Q, et al. Numerical evaluation method of turbulence drag reduction with riblets[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120263(in Chinese).
[17] CHOI H, MOIN P, KIM J. Direct numerical simulation of turbulent over riblets[J]. Journal of Fluid Mechanics, 1993, 255:503-539.
[18] CHU C D, KARNIADAKIS E G. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces[J]. Journal of Fluid Mechanics, 1993, 250:1-42.
[19] ZHANG J, JACKSON T L. A high-order incompressible flow solver with WENO[J]. Journal of Computational Physics, 2009, 228(7):2426-2442.
[20] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212
[21] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
[22] KIM J, MOIN P, MOSER R D. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. Journal of Fluid Mechanics, 1987, 177:133-166.
[23] HARTEN A, OSHER S. Uniformly high-order accurate non-oscillatory schemes I[J]. SIAM Journal of Numerical Analysis, 1987, 24(2):279-309.
[24] 傅德薰, 李新亮, 马延文, 等. 可压缩湍流直接数值模拟[M]. 北京:科学出版社, 2010:178-179. FU D X, LI X L, MA Y W, et al. Direct numerical simulation of compressible turbulence[M]. Beijing:Science Press, 2010:178-179(in Chinese).
[25] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2):405-452.
[26] KIM J, MOIN P. Application of a fractional-step method to incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1985, 59(2):308-323.
[27] HU F Q, HUSSAINI M Y, MANTHEY J L. Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1996, 124(1):177-191.
[28] GOLDSTEIN D, HANDLER R, SIROVICH L. Direct numerical simulation of turbulent flow over a modeled riblet covered surface[J]. Journal of Fluid Mechanics, 1995, 302:333-376.
[29] JIMÉNEZ J, MOIN P. The minimal flow unit in near-wall turbulence[J]. Journal of Fluid Mechanics, 1991, 225:213-240.
[30] BECHERT D W, BRUSE M, HAGE W V, et al. Experiments on drag reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338:59-87
[31] WU D, WANG J J, CUI G Y, et al. Effects of surface shapes on properties of turbulent/non-turbulent interface in turbulent boundary layers[J]. Science China-Technological Sciences, 2020, 63:214-222.
[32] 张兆顺, 崔桂香, 许春晓, 等. 湍流理论与模拟[M]. 北京:清华大学出版社, 2017:10-13. ZHANG Z S, CUI G X, XU C X, et al. Theory and modeling of turbulence[M]. Beijing:Tsinghua University Press, 2017:10-13(in Chinese).
[33] 崔光耀, 潘翀, 高琪, 等. 沟槽方向对湍流边界层流动结构影响的实验研究[J]. 力学学报, 2017, 49(6):1201-1212. CUI G Y, PAN C, GAO Q, et al. Flow structure in the turbulent boundary layer over directional riblets surfaces[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6):1201-1212(in Chinese).
文章导航

/