电子电气工程与控制

集群无人机队形重构及虚拟仿真验证

  • 卢燕梅 ,
  • 宗群 ,
  • 张秀云 ,
  • 鲁瀚辰 ,
  • 张睿隆
展开
  • 天津大学 电气自动化与信息工程学院, 天津 300072

收稿日期: 2019-10-14

  修回日期: 2019-12-23

  网络出版日期: 2019-12-19

基金资助

国家自然科学基金(61873340,61773279,61673294)

Formation reconstruction and virtual simulation verification of swarm UAVs

  • LU Yanmei ,
  • ZONG Qun ,
  • ZHANG Xiuyun ,
  • LU Hanchen ,
  • ZHANG Ruilong
Expand
  • School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China

Received date: 2019-10-14

  Revised date: 2019-12-23

  Online published: 2019-12-19

Supported by

National Natural Science Foundation of China (61873340, 61773279, 61673294)

摘要

队形重构是集群无人机(UAV)控制的重要问题,指无人机按照要求安全、无碰撞地从一个队形变换到另一个队形,其难点在于快速规划最优安全轨迹并控制无人机进行轨迹姿态的高精度跟踪。针对集群无人机队形重构的上述问题,首先,基于CAPT(Concurrent Assignment and Planning of Trajectories)算法,解决了多无人机的目标分配和轨迹生成的实时性问题,实现了集群无人机的最优安全路径规划;其次,提出一种有限时间多变量积分滑模连续控制算法,解决了无人机轨迹姿态的高精度跟踪问题,并通过MATLAB仿真验证了该控制算法的有效性;最后,为了更加真实直观地演示无人机三维仿真效果,建立了基于Gazebo-ROS的无人机仿真平台,实现了12架四旋翼无人机队形重构"建模-仿真-可视化"的一体化仿真演示,验证了上述路径规划算法和轨迹姿态控制算法的有效性。

本文引用格式

卢燕梅 , 宗群 , 张秀云 , 鲁瀚辰 , 张睿隆 . 集群无人机队形重构及虚拟仿真验证[J]. 航空学报, 2020 , 41(4) : 323580 -323580 . DOI: 10.7527/S1000-6893.2019.23580

Abstract

Formation reconstruction is an important issue in the control of Unmanned Aerial Vehicles (UAVs). It refers to the transformation of UAVs from one formation to another in a safe and collisionfree manner following the requirements. The difficulty lies in rapidly planning the optimal safety trajectory and controlling UAVs for high-precision tracking of trajectory attitude. The above problems of formation reconstruction of UAVs are studied. Firstly, based on the algorithm of Concurrent Assignment and Planning of Trajectories(CAPT), the real-time problem of target allocation and trajectory generation of UAVs is solved, which realizes the optimal safe path planning. Secondly, a finite time multivariable integral sliding mode control algorithm is proposed to solve the high-precision trajectory and attitude tracking problem of UAVs. MATLAB simulation verifies the effectiveness of this control alqorithm. Finally, in order to simulate the UAV more directly and accurately, the UAV simulation platform based on the Gazebo-ROS structure is built, which realizes the whole "modeling, simulation and visualization" simulation process of formation reconstruction of 12 UAVs. The results verify the applicability of the above control strategy and path planning algorithm.

参考文献

[1] 张佳龙,闫建国,张普.基于反步推演法的多机编队队形重构控制[J].航空学报, 2019, 40(11):323177. ZHANG J L, YAN J G, ZHANG P. Multi-UAV formation forming reconfiguration control based on back-stepping method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323177(in Chinese).
[2] 顾伟,汤俊,白亮,等.面向时间协同的多无人机队形变换最优效率模型[J].航空学报, 2019, 40(6):322599. GU W, TANG J, BAI L, et al. Time synergistic optimal efficiency model for formation transformation of multiple UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):322599(in Chinese).
[3] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1-2):83-97.
[4] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107.
[5] GOLDENBERG M, FELNER A, STERN R, et al. Enhanced partial expansion A*[J]. Journal of Artificial Intelligence Research, 2014, 50(1):141-187.
[6] KUMAR R, HYLAND D C. Control law design using repeated trials[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2001.
[7] SINGH L, FULLER J. Trajectory generation for a UAV in urban terrain, using nonlinear MPC[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2001.
[8] MELLINGER D, KUSHLEYEV A, KUMAR V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams[C]//2012 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2012.
[9] DEITS R, TEDRAKE R L. Efficient mixed-integer planning for UAVs in cluttered environments[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE Press, 2015:42-49.
[10] TURPIN M, MICHAEL N, KUMAR V. CAPT:Concurrent assignment and planning of trajectories for multiple robots[M]. California, CA:Sage Publications, Inc., 2014:98-112.
[11] TANG S, KUMAR V. A complete algorithm for generating safe trajectories for multi-robot teams[M]. Berlin:Robotics Research, 2018:599-616.
[12] TANG S, THOMAS J, KUMAR V. Hold Or take Optimal Plan (HOOP):A quadratic programming approach to multi-robot trajectory generation[J]. The International Journal of Robotics Research, 2018, 37(9), 1062-1084.
[13] QU S, XIA X, ZHANG J. Dynamics of discrete-time sliding-mode-control uncertain systems with a disturbance compensator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7):3502-3510.
[14] ZHOU W D, ZHU P X, WANG C L, et al. Position and attitude tracking control for a quadrotor UAV based on terminal sliding mode control[C]//201534th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2015.
[15] JAYAKRISHNAN H J. Position and attitude control of a quadrotor UAV using super twisting sliding mode[J]. IFAC, 2016, 49(1):284-289.
[16] TIAN B L, LIU L H, LU H C, et al. Multivariable finite time attitude control for quadrotor UAV:Theory and experimentation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2567-2577.
[17] ZHANG X Y, ZONG Q, TIAN B L, et al. Continuous robust fault-tolerant control and vibration suppression for flexible spacecraft without angular velocity[J]. International Journal of Robust and Nonlinear Control, 2019, 29(12):3915-3935.
[18] TIAN B L, MA Y X, LIU L H, et al. Adaptive multivariable finite-time attitude control for quadrotor UAV[C]//201837th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2018:9792-9796.
[19] 马广富,朱庆华,王鹏宇,等.基于终端滑模的航天器自适应预设性能姿态跟踪控制[J].航空学报, 2018, 39(6):321763. MA G F, ZHU Q H, WANG P Y, et al. Spacecraft adaptive preset performance attitude tracking control based on terminal sliding model[J]. Acta Aeronautica et Astronautica Sinica,2018, 39(6):321763(in Chinese).
[20] 张秀云,宗群,窦立谦,等.柔性航天器振动主动抑制及姿态控制[J].航空学报, 2019, 40(4):322503. ZHANG X Y, ZONG Q, DOU L Q, et al. Active vibration suppression and attitude control for flexible spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):322503(in Chinese).
[21] YU X, LI P, ZHANG Y. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 65(5):4135-4144.
[22] MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]//2011 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2011:2520-2525.
[23] MUELLER M W, HEHN M, D'ANDREA R. A computationally efficient motion primitive for quadrocopter trajectory generation[J]. IEEE Transactions on Robotics, 2015, 31(6):1294-1310.
[24] BHAT S P, BERNSTEIN D S. Continuous finite-time stabilization of the translational and rotational double integrators[J]. IEEE Transactions on Automatic Control, 1998, 43(5):678-682.
[25] TIAN B, LU H, ZUO Z, et al. Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters[J]. International Journal of Robust and Nonlinear Control, 2018, 28(1):281-295.
[26] GAZEBO. Gazebo Tutorials[EB/OL].(2014-01-01)[2019-09-02]. http://gazebosim.org/tutorials.
文章导航

/