[1] XU J, LUO J L, DAI W Y. Research on development of hypersonic inlet[J]. Tactical Missile Technology, 2016(5):25-32 (in Chinese).
[2] 尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3):252-256. YOU Y C, LIANG D W, HUANG G P. Investigation of internal waverider-derived hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(3):252-256 (in Chinese).
[3] 向先宏, 钱战森. 高超声速飞行器机体/推进气动布局一体化设计技术研究现状[J]. 航空科学技术, 2015, 26(10):44-52. XIANG X H, QIAN Z S. An overview and development analysis of hypersonic airframe/propulsion integrative design technology[J]. Aeronautical Science & Technology, 2015, 26(10):44-52 (in Chinese).
[4] 丁峰, 柳军, 沈赤兵, 等. 乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述[J]. 实验流体力学, 2018, 32(6):11-26. DING F, LIU J, SHEN C B, et al. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6):16-26 (in Chinese).
[5] 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1):245-260. WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260 (in Chinese).
[6] 符翔. 脊形吻切锥乘波体外形设计与优化[D]. 长沙:国防科技大学, 2017:33-76. FU X. Design and optimization of aerodynamic configuration of chined osculating cone waverider[D]. Changsha:National University of Defense Technology, 2017:33-76 (in Chinese).
[7] ZHOU H, JIN Z G, ZHANG K Y. Effects of entrance and exit aspect ratios on flow characteristics of inward turning inlets[J]. Journal of Propulsion Technology, 2018, 39(12):2679-2684.
[8] YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, VA:AIAA, 2011.
[9] 向先宏, 钱战森. 吸气式高超声速飞行器机体/推进一体化设计技术研究进展及分类对比分析[J]. 推进技术, 2018, 39(10):2207-2218. XIANG X H, QIAN Z S. An overview and development analysis of air-breathing hypersonic airframe/propulsion integrative design technology[J]. Journal of Propulsion Technology, 2018, 39(10):2707-2218 (in Chinese).
[10] 向先宏,王成鹏,程克明. 基于类咽式进气道的高超声速飞行器一体化设计[J]. 宇航学报, 2012, 33(1):19-26. XIANG X H, WANG C P, CHENG K M. Integrative design of airbreathing hypersonic vehicle based on sim-jaws inlet[J]. Journal of Astronautics, 2012, 33(1):19-26 (in Chinese).
[11] 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018, 39(10):122078. QIAO W Y, YU A Y, YANG D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):122078 (in Chinese).
[12] 李怡庆, 施崇广, 朱呈祥, 等. 乘波前体三维内转进气道气动融合设计[J]. 推进技术, 2018, 39(10):2320-2328. LI Y Q, SHI C G, ZHU C X, et al. Aerodynamic combination design concept for hypersonic waverider forebody and inward turning inlet[J]. Journal of Propulsion Technology, 2018, 39(10):2320-2328 (in Chinese).
[13] 李怡庆, 周驯黄, 朱呈祥, 等. 曲锥前体/三维内转进气道一体化设计与分析[J]. 航空动力学报, 2018, 33(1):87-96. LI Y Q, ZHOU X H, ZHU C X, et al. Integration design and analysis for curved conical forebody and three-dimensional inward turning inlet[J]. Journal of Aerospace Power, 2018, 33(1):87-96 (in Chinese).
[14] 南向军, 张堃元, 金志光. 乘波前体两侧高超声速内收缩进气道一体化设计[J]. 航空学报, 2012, 33(8):1417-1426. NAN X J, ZHANG K Y, JIN Z G. Integrated design of waverider forebody and lateral hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1417-1426 (in Chinese).
[15] 曲俐鹏. 基于内收缩基准流场的乘波进气道设计方法研究[D]. 绵阳:中国空气动力研究与发展中心, 2016:31-42. QU L P. The design of wave-rider inlet based on inward turning basal flow[D]. Mianyang:China Aerodynamics Research and Development Center, 2016:31-42 (in Chinese).
[16] 贺旭照, 秦思, 周正, 等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6):1270-1276. HE X Z, QING S, ZHOU Z, et al. Integrated design and performance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6):1270-1276 (in Chinese).
[17] WANG C P, TIAN X, YANG L F, et al. Preliminary integrated design of hypersonic vehicle configurations including inward-turning inlets[J]. Journal of Aerospace Engineering, 2015, 28(6):04014143.
[18] XIAO Y, CUI K, LI G L, et al. Preliminary study of aerodynamic performance for waverider-based hypersonic vehicles with dorsal mounted engines[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 2017.
[19] WANG X D, WANG J F, LYU Z J. A new integration method based on the coupling of mutistage osculating cones waverider and Busemann inlet for hypersonic airbreathing vehicles[J]. Acta Astronautica, 2016, 126:424-438.
[20] 丁峰. 吸气式高超声速飞行器内外流一体化"全乘波"气动设计理论和方法研究[D]. 长沙:国防科技大学, 2016. DING F. Research of a novel airframe/inlet integrated full-waverider aerodynamic design methodology for air-breathing hypersonic vehicles[D]. Changsha:National University of Defense Technology, 2016 (in Chinese).
[21] DING F, LIU J, SHEN C B, et al. Novel approach for design of a waverider vehicle generated from axisymmetric supersonic flows past a pointed von Karman ogive[J]. Aerospace Science and Technology, 2015, 42:297-308.
[22] ZUCROW M J, HOFFMAN J D. Gas dynamics, Vol.2:Multidimensional flow[M]. New York:John Wiley and Sons, Inc., 1977:112-294, 250-265.
[23] NIELSEN J N. Missile aerodynamics[M]. New York:McGraw-Hill Book Company,Inc., 1960:280-293.
[24] ANSYS. ANSYS FLUENT 13.0 theory guide[J]. Canonsburg, PA:ANSYS, Inc., 2010.