流体力学与飞行力学

内转式进气道/冯·卡门乘波体一体化设计方法

  • 张文浩 ,
  • 柳军 ,
  • 丁峰
展开
  • 国防科技大学 空天科学学院 高超声速冲压发动机技术重点实验室, 长沙 410073

收稿日期: 2019-09-18

  修回日期: 2019-12-16

  网络出版日期: 2019-12-13

基金资助

国家自然科学基金(11702322);国家重点研发计划(2019YFA0405202)

Integrated design method of inward turning inlet/Von Karman waverider

  • ZHANG Wenhao ,
  • LIU Jun ,
  • DING Feng
Expand
  • Science and Technology on Scramjet Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2019-09-18

  Revised date: 2019-12-16

  Online published: 2019-12-13

Supported by

National Natural Science Foundation of China (11702322);National Key Research and Development Program of China (2019YFA0405202)

摘要

应用特征线理论设计了内转式轴对称基准流场以及外压缩轴对称基准流场,利用激波交线、流线追踪方法等相关技术提出了一种头部进气式的高超声速飞行器内转式进气道/冯·卡门乘波体一体化设计方法,并对生成的一体化构型进行了数值模拟及分析,数值结果验证了该方法的正确性和有效性。该一体化设计方法基本保留了内转式进气道的优良特性,并以高升阻比乘波体为原型构建较高升阻比的一体化构型,从流场耦合的角度出发为减弱机体与进气道之间复杂的波系干扰,实现飞行器内外流的完全耦合进行了探索。

本文引用格式

张文浩 , 柳军 , 丁峰 . 内转式进气道/冯·卡门乘波体一体化设计方法[J]. 航空学报, 2020 , 41(3) : 123502 -123502 . DOI: 10.7527/S1000-6893.2019.23502

Abstract

The method of characteristics is applied to design the inward turning axisymmetric basic flow field and the external compressing axisymmetric basic flow field. An integrated design method of inward turning inlet/Von Karman waverider for hypersonic vehicle with head-intake is proposed based on the shock intersection line and streamline tracing. The integrated configuration is also presented and an analysis of the integrated configuration is carried out, verifying the correctness and the feasibility of the method. The excellent characteristics of the inward turning inlet is basically retained for using the integrated design method and the integrated configuration is constructed by using the waverider with a high lift-drag ratio as the prototype. From the view of flow field coupling, the paper intends to reduce the complex wave interference between the body and the inlet, realizing the complete coupling of the internal and external flow of the aircraft.

参考文献

[1] XU J, LUO J L, DAI W Y. Research on development of hypersonic inlet[J]. Tactical Missile Technology, 2016(5):25-32 (in Chinese).
[2] 尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3):252-256. YOU Y C, LIANG D W, HUANG G P. Investigation of internal waverider-derived hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(3):252-256 (in Chinese).
[3] 向先宏, 钱战森. 高超声速飞行器机体/推进气动布局一体化设计技术研究现状[J]. 航空科学技术, 2015, 26(10):44-52. XIANG X H, QIAN Z S. An overview and development analysis of hypersonic airframe/propulsion integrative design technology[J]. Aeronautical Science & Technology, 2015, 26(10):44-52 (in Chinese).
[4] 丁峰, 柳军, 沈赤兵, 等. 乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述[J]. 实验流体力学, 2018, 32(6):11-26. DING F, LIU J, SHEN C B, et al. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6):16-26 (in Chinese).
[5] 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1):245-260. WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260 (in Chinese).
[6] 符翔. 脊形吻切锥乘波体外形设计与优化[D]. 长沙:国防科技大学, 2017:33-76. FU X. Design and optimization of aerodynamic configuration of chined osculating cone waverider[D]. Changsha:National University of Defense Technology, 2017:33-76 (in Chinese).
[7] ZHOU H, JIN Z G, ZHANG K Y. Effects of entrance and exit aspect ratios on flow characteristics of inward turning inlets[J]. Journal of Propulsion Technology, 2018, 39(12):2679-2684.
[8] YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, VA:AIAA, 2011.
[9] 向先宏, 钱战森. 吸气式高超声速飞行器机体/推进一体化设计技术研究进展及分类对比分析[J]. 推进技术, 2018, 39(10):2207-2218. XIANG X H, QIAN Z S. An overview and development analysis of air-breathing hypersonic airframe/propulsion integrative design technology[J]. Journal of Propulsion Technology, 2018, 39(10):2707-2218 (in Chinese).
[10] 向先宏,王成鹏,程克明. 基于类咽式进气道的高超声速飞行器一体化设计[J]. 宇航学报, 2012, 33(1):19-26. XIANG X H, WANG C P, CHENG K M. Integrative design of airbreathing hypersonic vehicle based on sim-jaws inlet[J]. Journal of Astronautics, 2012, 33(1):19-26 (in Chinese).
[11] 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018, 39(10):122078. QIAO W Y, YU A Y, YANG D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):122078 (in Chinese).
[12] 李怡庆, 施崇广, 朱呈祥, 等. 乘波前体三维内转进气道气动融合设计[J]. 推进技术, 2018, 39(10):2320-2328. LI Y Q, SHI C G, ZHU C X, et al. Aerodynamic combination design concept for hypersonic waverider forebody and inward turning inlet[J]. Journal of Propulsion Technology, 2018, 39(10):2320-2328 (in Chinese).
[13] 李怡庆, 周驯黄, 朱呈祥, 等. 曲锥前体/三维内转进气道一体化设计与分析[J]. 航空动力学报, 2018, 33(1):87-96. LI Y Q, ZHOU X H, ZHU C X, et al. Integration design and analysis for curved conical forebody and three-dimensional inward turning inlet[J]. Journal of Aerospace Power, 2018, 33(1):87-96 (in Chinese).
[14] 南向军, 张堃元, 金志光. 乘波前体两侧高超声速内收缩进气道一体化设计[J]. 航空学报, 2012, 33(8):1417-1426. NAN X J, ZHANG K Y, JIN Z G. Integrated design of waverider forebody and lateral hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1417-1426 (in Chinese).
[15] 曲俐鹏. 基于内收缩基准流场的乘波进气道设计方法研究[D]. 绵阳:中国空气动力研究与发展中心, 2016:31-42. QU L P. The design of wave-rider inlet based on inward turning basal flow[D]. Mianyang:China Aerodynamics Research and Development Center, 2016:31-42 (in Chinese).
[16] 贺旭照, 秦思, 周正, 等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6):1270-1276. HE X Z, QING S, ZHOU Z, et al. Integrated design and performance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6):1270-1276 (in Chinese).
[17] WANG C P, TIAN X, YANG L F, et al. Preliminary integrated design of hypersonic vehicle configurations including inward-turning inlets[J]. Journal of Aerospace Engineering, 2015, 28(6):04014143.
[18] XIAO Y, CUI K, LI G L, et al. Preliminary study of aerodynamic performance for waverider-based hypersonic vehicles with dorsal mounted engines[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 2017.
[19] WANG X D, WANG J F, LYU Z J. A new integration method based on the coupling of mutistage osculating cones waverider and Busemann inlet for hypersonic airbreathing vehicles[J]. Acta Astronautica, 2016, 126:424-438.
[20] 丁峰. 吸气式高超声速飞行器内外流一体化"全乘波"气动设计理论和方法研究[D]. 长沙:国防科技大学, 2016. DING F. Research of a novel airframe/inlet integrated full-waverider aerodynamic design methodology for air-breathing hypersonic vehicles[D]. Changsha:National University of Defense Technology, 2016 (in Chinese).
[21] DING F, LIU J, SHEN C B, et al. Novel approach for design of a waverider vehicle generated from axisymmetric supersonic flows past a pointed von Karman ogive[J]. Aerospace Science and Technology, 2015, 42:297-308.
[22] ZUCROW M J, HOFFMAN J D. Gas dynamics, Vol.2:Multidimensional flow[M]. New York:John Wiley and Sons, Inc., 1977:112-294, 250-265.
[23] NIELSEN J N. Missile aerodynamics[M]. New York:McGraw-Hill Book Company,Inc., 1960:280-293.
[24] ANSYS. ANSYS FLUENT 13.0 theory guide[J]. Canonsburg, PA:ANSYS, Inc., 2010.
文章导航

/