针对暂冲式超声速风洞中的声爆试验,发展了近场空间压力精确测量技术,以航空工业空气动力研究院的FL-60风洞为例,开展了技术验证。FL-60风洞是一座典型的亚跨超三声速下吹式风洞,其试验马赫数范围为0.3~4.2,试验段尺寸为1.2 m×1.2 m,单车次试验时间通常为数十秒。根据暂冲式风洞试验时间短、耗气量大等特点,设计了无反射测压轨以代替传统的静压探针,大幅提高了声爆近场空间压力的测量效率。通过CFD技术对无反射测压轨的流动特性、模型安装位置以及风洞试验段中的波系进行了分析,验证了测压轨设计方案的可行性。采用Seeb-ALR低声爆标模和自行设计的带喷流的旋成体模型进行了验证性试验,采用参考车次方法和空间平均技术获得了高质量的数据,试验测量结果与CFD计算结果一致性较好,验证了声爆近场空间压力测量系统设计的合理性。
For the sonic boom test in the intermittent supersonic wind tunnels, the accurate measurement technology for sonic boom near-field pressure is developed. Technical verification is carried out in FL-60 wind tunnel of AVIC Aerodynamics Research Institute. FL-60 wind tunnel is a trisonic blow down wind tunnel with Mach number range from 0.3 to 4.2, and the test section size is 1.2 m×1.2 m. The test time of each run is usually tens of seconds. According to the characteristics of intermittent wind tunnels with short run time and large air consumption, a non-reflective pressure measurement rail is designed, which significantly improves the efficiency of the measurement of sonic boom near-field pressure. The CFD technology is utilized to analyze the flow characteristics of the non-reflection rail, model installation position and structure of shock wave system in the wind tunnel test section, and the feasibility of the non-reflection rail is verified. The Seeb-ALR low boom model and the self-designed axisymmetric model with jet are utilized to carry out the validation test. The high-quality measurement data are obtained by using the reference run method and spatial averaging technology as auxiliary method. The test results are in good agreement with the CFD calculation, which verifies the rationality of the sonic boom near-field pressure measurement system.
[1] LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1):586-598.
[2] 朱自强,吴宗成,陈迎春,等.民机空气动力学设计先进技术[M].上海:上海交通大学出版社, 2013. ZHU Z Q, WU Z C, CHEN Y C, et al. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai:Shanghai Jiao Tong University Press, 2013(in Chinese).
[3] 朱自强,兰世隆.超声速民机和降低音爆研究[J].航空学报, 2015, 36(8):2507-2528. ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2507-2528(in Chinese).
[4] 韩忠华,乔建领,丁玉临,等.新一代环保型超声速客机气动相关关键技术与研究进展[J].空气动力学学报, 2019, 37(4):620-635. HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next generation environmentally friendly supersonic transport aircraft:A review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4):620-635(in Chinese).
[5] QIAN Z S, YANG X M. Key aerodynamic technologies of high Mach number civil transport[C]//Proceeding of Young Research Conference of the 5th International Forum of Aviation Research, 2014.
[6] CARLSON H W. An investigation of some aspects of the sonic boom by means of wind-tunnel measurements of pressures about several bodies of revolution at a Mach number of 2.01:NASA TND-161[R]. Wangshington, D.C.:NASA, 1959.
[7] EDGE P M, HUBBARD H H. Review of sonic-boom simulation devices and techniques[J]. Journal of the Acoustical Society of America, 1972, 51:722-728.
[8] CARLSON H W, MORRIS O A. Wind-tunnel sonic-boom testing techniques[J]. Journal of Aircraft, 1967, 4(3):245-249.
[9] FERRI A, WANG H. Observations of problems related to experimental determination of sonic boom:NASA SP 1970-255[R]. Wangshington, D.C.:NASA, 1970.
[10] DURSTON D A, CLIFF S E, WAYMAN T R, et al. Near field sonic boom test on two low-boom configurations using multiple measurement techniques at NASA Ames:AIAA-2011-3333[R]. Reston, VA:AIAA, 2011.
[11] KISELEVA T, KOSINOV A, ERMOLAEV Y, et al. Modeling of sonic boom phenomena[C]//Proceeding of the International Conference on High-Speed Vehicle Science and Technology, 2018.
[12] PRITULO T, CHENEYSHEV S, IVANOV A, et al. Development of the technique of sonic boom experimental researches[C]//Proceeding of the International Conference on High-Speed Vehicle Science and Technology, 2018.
[13] 刘中臣,钱战森,冷岩.声爆近场空间压力分布风洞试验精确测量技术研究[C]//首届中国空气动力学大会, 2018. LIU Z C, QIAN Z S, LENG Y. Research on accurate measurement techniques of pressure distribution in wind tunnel near field sonic boom test[C]//The First Chinese Conference of Aerodynamics, 2018(in Chinese).
[14] LENG Y, QIAN Z S, LIU Z C. Numerical simulation assistant design of the near-field sonic boom signature measurement system for AVIC ARI's FL-60 wind tunnel[C]//Proceeding of the International Conference on High-Speed Vehicle Science and Technology, 2018.
[15] CLIFF S, ELMILIGGUI A, AFTOSMIS M, et al. Design and evaluation of a pressure rail for sonic boom measurement in wind tunnels[C]//Seventh International Conference on Computational Fluid Dynamics (ICCFD7), 2012.
[16] MORGENSTERN J M. How to accurately measure low sonic boom or model surface pressures in supersonic wind tunnels:AIAA-2012-3215[R]. Reston, VA:AIAA, 2012.
[17] MORGENSTERN J M. Distortion correction for low sonic boom measurement in wind tunnels:AIAA-2012-3216[R]. Reston, VA:AIAA, 2012.
[18] DURSTON D A, ELMILIGUI A A, CLIFF S E, et al. Experimental and computational sonic boom assessment of Boeing N+2 low boom models:AIAA-2014-2140[R]. Reston, VA:AIAA, 2014.
[19] MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom six decades of research:NASA SP 2014-622[R]. Wangshington, D.C.:NASA, 2014.
[20] 钱战森,韩忠华.声爆研究的现状与挑战[J].空气动力学学报, 2019, 37(4):601-619. QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4):601-619(in Chinese).
[21] 刘中臣,钱战森,冷岩.声爆近场压力测量风洞试验技术研究进展[J].空气动力学学报, 2019, 37(4):636-645. LIU Z C, QIAN Z S, LENG Y. Review of recent progress of wind tunnel measurement techniques for off-body sonic boom pressure[J]. Acta Aerodynamica Sinica, 2019, 37(4):636-645(in Chinese).
[22] CLIFF S E, DURSTON D A, ELMILIGUI A A, et al. Computational and experimental assessment of models for the first AIAA sonic boom prediction workshop:AIAA-2014-0560[R]. Reston, VA:AIAA, 2014.
[23] MORGENSTERN J M. Measurements supporting the 2014 first sonic boom workshop prediction cases:AIAA-2014-2007[R]. Reston, VA:AIAA, 2014.
[24] PARK M A, NEMEC M. Near field summary and statistical analysis of the second AIAA sonic boom prediction workshop:AIAA-2017-3256[R]. Reston, VA:AIAA, 2017.
[25] RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop:AIAA-2017-3257[R]. Reston, VA:AIAA, 2017.
[26] GEORGE A R, SEEBASS R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal, 1971, 9(10):2091-2903.
[27] DARDEN C M. Sonic boom minimization with nose-bluntness:NASA TP 1979-1348[R]. Wangshington, D.C.:NASA, 1979.