流体力学与飞行力学

多级轴流压气机二维性能预测方法

  • 杨晓飞 ,
  • 蒋永松 ,
  • 潘若痴 ,
  • 孟德君
展开
  • 中国航发沈阳发动机研究所, 沈阳 110015

收稿日期: 2019-09-20

  修回日期: 2019-12-16

  网络出版日期: 2019-12-12

2D performance prediction approach for multi-stage axial compressors

  • YANG Xiaofei ,
  • JIANG Yongsong ,
  • PAN Ruochi ,
  • MENG Dejun
Expand
  • AECC Shenyang Engine Research Institute, Shenyang 110015, China

Received date: 2019-09-20

  Revised date: 2019-12-16

  Online published: 2019-12-12

摘要

为了满足多级轴流压气机性能预估需求,在一个流线曲率程序基础上开展了经验、半经验关系式研究。通过对文献中的损失模型进行校验及融合,建立了相匹配的损失计算模块,并改进了端壁损失计算方法;研究了利用S1流面计算修正S2正问题的方法,解决了基于传统平面叶栅试验数据的攻角、落后角模型与先进技术叶型之间不匹配的问题,继而发展出了一个高精度的S2正问题计算方法。为了验证计算方法,利用3个不同负荷水平的、经试验验证的多级压气机进行了校验计算。对比表明,发展的程序对多级压气机具有很高的计算精度和稳定性,可用于多级轴流压气机性能分析。

本文引用格式

杨晓飞 , 蒋永松 , 潘若痴 , 孟德君 . 多级轴流压气机二维性能预测方法[J]. 航空学报, 2020 , 41(3) : 123515 -123515 . DOI: 10.7527/S1000-6893.2019.23515

Abstract

This paper conducts a study on the empirical and semi-empirical models for performance prediction of multi-stage axial compressors based on a streamline curvature code. By verifying and integrating the models in literature, a matching loss calculation module is set up, and the endwall loss model is improved. An approach for revising the S2 forward problem is developed with S1 stream surface calculation, and the contradiction between the angle of incidence and deviation angle models based on the data from traditional cascade tests and state-of-the-art airfoils is solved. Then, a S2 analysis program with high solution accuracy is developed. Three experimental compressors with different work coefficients are used to validate the approach. An overall comparison demonstrates that the improved program can have high accuracy and stability, and is applicable for performance analysis of multi-stage axial compressors.

参考文献

[1] AUNGIER R H. Axial-flow compressors:A strategy for aerodynamic design and analysis[M]. New York:ASME, 2003:199-201.
[2] 桂幸民, 滕金芳, 刘宝杰, 等. 航空压气机气动热力学理论与应用[M]. 上海:上海交通大学出版社, 2014:256-264. GUI X M, TENG J F, LIU B J, et al. Compressor aerothermodynamics and its application in aircraft engines[M]. Shanghai:Shanghai Jiao Tong University Press, 2014:256-264 (in Chinese).
[3] DENTON J D. Some limitations of turbomachinery CFD:GT2010-22540[R]. New York:ASME, 2010.
[4] NOVAK R A. Streamline curvature computing procedures for fluid-flow problem[J]. Journal of Engineering for Gas Turbines and Power, 1967, 89(4):478-490.
[5] FROST D H. A streamline curvature through-flow computer program for analyzing the flow through axial-flow turbomachines:R. & M. No.3687[R]. London:Aeronautical Research Council, 1970.
[6] MARSH H. A digital computer program for the through-flow fluid mechanics in an arbitrary turbomachine using a matrix method:R. & M. No. 3509[R]. London:Aeronautical Research Council, 1966.
[7] KOCH C C, SMITH L H. Loss sources and magnitudes in axial-flow compressors[J]. Journal of Engineering for Gas Turbines and Power, 1976, 98(3):411-424.
[8] KONIG W M, HENNECKE D K, FOTTNER L. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings:Part Ⅰ- A model for subsonic flow[J]. Journal of Turbomachinery, 1996, 118(1):73-80.
[9] KONIG W M, HENNECKE D K, FOTTNER L. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings:Part Ⅱ- A model for supersonic flow[J]. Journal of Turbomachinery, 1996, 118(1):81-87.
[10] BLOCH G S. Flow losses in supersonic compressor cascades[D]. Blacksburg, VA:Virginia Polytechnic Institute and State University, 1996.
[11] BOYER K M, BRIEN W F. An improved streamline curvature approach for off-design analysis of transonic axial compression systems:GT-2002-30444[R]. New York:ASME, 2002.
[12] MILAN B, PETROVIC M V, ALEXANDER W. Secondary flows, endwall effects and stall detection in axial compressor design:GT2014-25115[R]. New York:ASME, 2014.
[13] KIM S J, KIM D H, KIM K S, et al. New profile loss model for improved prediction of transonic axial flow compressor performance in choking region:GT2015-42797[R]. New York:ASME, 2015.
[14] AZAMAR AGUIRRE H, PACHIDIS V, TEMPLALEXIS I. An improved streamline curvature-based design approach for transonic axial-flow compressor blading:ISABE 2017-22651[R]. Indianapolis, IN:International Society for Air Breathing Engines,2017.
[15] DICKENS T, DAY I. The design of highly loaded axial compressors:GT2009-59291[R]. New York:ASME, 2009.
[16] HANSEN A, KAPPIS W. Automised calibration of empirical loss and deviation models for compressor blade row:2001-GT-0346[R] New York:ASME, 2001.
[17] SCHNOES M, NICKE E. Automated calibration of compressor loss and deviation correlations:GT2015-42644[R]. New York:ASME, 2015.
[18] 刘波, 马乃行, 杨小东, 等. 适应较大叶型弯角范围的轴流压气机落后角模型[J]. 航空动力学报, 2014, 29(8):1824-1831. LIU B, MA N X, YANG X D, et al. Deviation angle models suitable for wider range of blade profile camber in axial-flow compressor[J]. Journal of Aerospace Power, 2014, 29(8):1824-1831(in Chinese).
[19] WU X X, LIU B, SHI L, et al. Development of an improved streamline curvature approach for transonic axial compressor:GT2016-57072[R]. New York:ASME, 2016.
[20] 刘志伟, 季路成, 蔡军. 考虑端区黏性和径向掺混的流线曲率通流算法研究[J]. 航空发动机, 2014, 40(3):35-39. LIU Z W, JI L C, CAI J. Streamline curvature algorithm considering viscosity and radial mixing on tip region[J]. Aeroengine, 2014, 40(3):35-39 (in Chinese).
[21] WU D R, TENG J F, QIANG X Q, et al. An implicit off-design deviation angle correlation of axial flow compressor blade elements:GT2017-63189[R]. New York:ASME, 2017.
[22] 刘永泉, 刘太秋, 季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报, 2015, 36(8):2563-2576. LIU Y Q, LIU T Q, JI L C. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2563-2576 (in Chinese).
[23] JOHNSEN I A, BULLOCK R O. Aerodynamic design of axial-flow compressors:NASA SP-36[R]. Washington, D.C.:NASA, 1965.
[24] LIEBLEIN S, ROUDEBUSH W H. Theoretical loss relations for low-speed two-dimensional-cascade flow:NACA TN-3662[R]. Washington, D.C.:NACA, 1956.
[25] LIEBLEIN S. Loss and stall analysis of compressor cascades[J]. Journal of Basic Engineering, 1959, 81(3):387-397.
[26] WRIGHT P I, MILLER D C. An improved compressor performance prediction model:C432/028[R]. London:Institute for Mechanical Engineering, 1991.
[27] MILLER G R, LEWIS G W, HARTMANN M J. Shock losses in transonic compressor blade rows[J]. Journal of Engineering for Gas Turbines and Power, 1961, 83(3):235-242.
[28] 吴虎. 燃气轮机特性分析与模拟[M]. 西安:西北工业大学出版社, 2008:47-49. WU H. Characteristic analysis and simulation of gas turbine[M]. Xi'an:Northwestern Polytechnical University Press, 2008:47-49 (in Chinese).
[29] GRIEPENTROG H R. Secondary flow losses in axial compressors:AGARD-LS-39[R]. Paris:AGARD, 1970.
[30] CLINE S J, FESLER W, LIU H S, et al. High pressure compressor component performance report:NASA CR-168245[R]. Washington, D.C.:NASA, 1983.
文章导航

/