固体力学与飞行器总体设计

新一代战斗机座舱盖关键技术与设计方案

  • 杨波 ,
  • 赵培林 ,
  • 蔡三军 ,
  • 周生林 ,
  • 陈川
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 中国航空工业成都飞机设计研究所 机电系统设计研究部, 成都 610091

收稿日期: 2019-09-07

  修回日期: 2019-11-11

  网络出版日期: 2019-12-05

Key technologies and design of new generation fighter canopy

  • YANG Bo ,
  • ZHAO Peilin ,
  • CAI Sanjun ,
  • ZHOU Shenglin ,
  • CHEN Chuan
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. Department of Electromechanical System Design, AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610091, China

Received date: 2019-09-07

  Revised date: 2019-11-11

  Online published: 2019-12-05

摘要

座舱是战斗机三大电磁散射源之一,座舱盖雷达散射截面(RCS)的减缩技术是实现新一代战斗机全机雷达隐身性能的关键技术。基于新一代战斗机隐身外形平台,座舱盖在隐身技术、透明件结构、抗鸟撞、弹射救生、光学性能、结构变形控制等领域均面临新的挑战。本文以新一代战斗机为背景,研究了座舱盖性能提升的4项关键技术:座舱盖隐身性能提升技术、大型整体座舱盖透明件结构设计技术、复杂曲面座舱盖光学性能仿真优化技术、大尺寸活动部件变形及状态控制技术。经过上述关键技术研究,完成了新一代战斗机座舱盖设计技术体系的升级,促进了新一代战斗机座舱盖技术和性能的跨代提升。

本文引用格式

杨波 , 赵培林 , 蔡三军 , 周生林 , 陈川 . 新一代战斗机座舱盖关键技术与设计方案[J]. 航空学报, 2020 , 41(6) : 523465 -523465 . DOI: 10.7527/S1000-6893.2019.23465

Abstract

Cabin is one of the three electromagnetic scattering sources of the fighter. Cabin Radar Cross Section (RCS) reduction is a key technology to achieve the stealth performance of whole aircraft radar of new generation fighter. Due to the stealth shape of new generation fighter, the canopy is facing challenges in stealth technology, transparency structure, bird-impact proof, ejection escape, optical performance design, and deformation control. To promote canopy performance, this paper, based on research and development of new generation fighter, studied four key technologies, including the improvement technology of canopy stealth performance, the structure design technology of large integral transparency, the simulation and optimization technology of complex surface canopy optical performance, and the deformation and state control technology of large-size movable structure. After the above key technologies research, the upgrading of canopy design technology system for new generation fighter has been completed, promoting the cross-generation upgrading of canopy performance of new generation fighter.

参考文献

[1] 航空航天工业部. 固定翼飞机风挡系统通用规范:HB6514-91[S]. 北京:中华人民共和国航空航天工业部, 1991. Ministry of Aerospace Industry. General specification for windshield systems of fixed wing aircraft:HB6514-91[S]. Beijing:Ministry of Aerospace Industry of the People's Republic of China,1991(in Chinese).
[2] 国防科学技术工业委员会.飞机座舱盖系统通用规范:GJB1393-92[S]. 北京:国防科工委军标出版发行部, 1993. COSTIND.General specifications for aircraft cockpit canopy system:GJB1393-92[S].Beijing:National Defense Science and Industry Commission Military Standard Publication and Issuance Department, 1993(in Chinese).
[3] 国防科学技术工业委员会.歼击机座舱几何尺寸:GJB35A-93[S].北京:国防科工委军标出版发行部, 1994. COSTIND.Aircrew station geometry for fighter:GJB35A-93[S].Beijing:National Defense Science and Industry Commission Military Standard Publication and Issuance Department, 1994(in Chinese).
[4] 袁俊. F-22"猛禽"制空主力战斗机[J]. 航空科学技术, 2005(5):18-20. YUAN J. F-22 "Raptor" air superiority fighter[J]. Aeronautical Science and Technology, 2005(5):18-20(in Chinese).
[5] ANG X K. Transparent organic materials of aircraft cockpit canopies:Research status and development trends[J]. Materials Research Innovations, 2015(19):119-205.
[6] F/A-22座舱盖透明件的各种要求[J]. 航空周刊, 2003, 1. Various requirements for transparency of F/A-22 canopy[J]. Aviation Weekly,2003, 1(in Chinese).
[7] 蔡三军. 先进战斗机水泡式座舱盖的研究与设计(国防科技报告)[R]. 成都:成都飞机设计研究所档案馆, 2004. CAI S J. Research and design of advanced fighter bubble canopy (National Defense Science and Technology Report)[R]. Chengdu:Archives of CADI, 2004(in Chinese).
[8] TAKASHI F, MAKOTO Y. XF-2 canopy jettison system design and development[C]//The 36th Annual SAFE Symposium, 1998:83-86.
[9] LAURENCE J B. Explosive fracturing of an F-16 canopy for through-canopy crew egress[C]//The 38th Annual SAFE Symposium, 2000.
[10] RALPH H, CHARLES R. Process development for the MK109 Mod 1 canopy jettison rocket motor[C]//The 39th Annual SAFE Symposium, 2001.
[11] 周生林. 歼-XX飞机座舱盖抗鸟撞鉴定试验分析报告[R]. 成都:成都飞机设计研究所档案馆, 2012. ZHOU S L. Analysis report on bird impact identification test for canopy of fighter-XX[R]. Chengdu:Archives of CADI, 2012(in Chinese).
[12] 桑建华. 飞行器隐身技术[M]. 北京:航空工业出版社, 2013:10-11. SANG J H. Low-observable technologies of aircraft[M]. Beijing:Aviation Industry Press, 2013:10-11(in Chinese).
[13] 张勇. 飞机座舱雷达散射截面控制技术研究总结报告[R]. 成都:成都飞机设计研究所档案馆, 2010. ZHANG Y. Summary report on control technology of scattered cross section of aircraft cabin radar[R]. Chengdu:Archives of CADI, 2010(in Chinese).
[14] DAVID L. Introduction to RF stealth[M]. Stevenage:SciTech Publishing Inc, 2004.
[15] 陈益. F-22及F-35的高水平隐身[J]. 航空维修与工程, 2007(1):39-40. CHEN Y. High-level of stealth for the F/A-22 and F-35[J]. Aviation Maintenance & Engineering, 2007(1):39-40(in Chinese).
[16] 张考, 马东立. 军用飞机生存力与隐身设计[M]. 北京:国防工业出版社, 2002:6. ZHANG K, MA D L. Military aircraft survivability and stealth design[M]. Beijing:National Defence Industry Press, 2002:6(in Chinese).
[17] 余雄庆, 杨景佐. 飞行器隐身设计基础[M]. 南京:南京航空学院, 1992. YU X Q, YANG J Z. Stealth design basis of air craft[M]. Nanjing:Nanjing Aviation Academy, 1992(in Chinese).
[18] 杨波. 1:3座舱低RCS试验段RCS测试试验任务书[R]. 成都:成都飞机设计研究所档案馆, 2005. YANG B. Specification of 1:3 canopy low RCS test section[R]. Chengdu:Archives of CADI, 2005(in Chinese).
[19] 杨波. 1:3座舱低RCS试验段RCS测试试验报告[R]. 成都:成都飞机设计研究所档案馆, 2005. YANG B. Test report of 1:3 canopy low RCS test section[R]. Chengdu:Archives of CADI, 2005(in Chinese).
[20] 杨波. 座舱雷达截面减缩控制技术研究技术总结报告[R]. 成都:成都飞机设计研究所档案馆, 2005. YANG B. Technical final report of canopy radar section reduction control technology research[R]. Chengdu:Archives of CADI, 2005(in Chinese).
[21] 杨波. 战斗机座舱雷达截面减缩控制技术研究技术总结(国防科技报告)[R]. 成都:成都飞机设计研究所档案馆, 2005. YANG B. Technical final report of aircraft canopy radar section reduction control technology research (National Defense Science and Technology Report)[R]. Chengdu:Archives of CADI, 2005(in Chinese).
[22] 杨波. 飞机风挡光学性能优化设计及工程应用探讨[J]. 航空工程, 2002. YANG B. Optimal design and engineering application of aircraft windshield optical performance[J]. Aviation Engineering, 2002(in Chinese).
[23] 杨波. 基于CATIA二次开发的复杂曲面透明件光学性能仿真[J]. 航空工程, 2009(3):2-7. YANG B. Canopy transparency optical performance simulation of complex surfaces based on CATIA secondary development[J]. Aviation Engineering, 2009(3):2-7(in Chinese).
[24] 王鑫, 王刚, 张雪飞,等. 基于CFD的座舱盖加温疲劳试验台设计方案优选[J]. 航空学报,2018, 39(8):121863. WANG X, WANG G, ZHANG X F, et al. Scheme selection for heating fatigue test-bed design of canopy based on CFD[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):121836(in Chinese).
[25] 陈川. 歼-XX飞机一体化座舱盖热变形试验报告[R]. 成都:成都飞机设计研究所档案馆, 2012. CHEN C. Therma deformation test report of Fighter-XX aircraft integrated canopy[R]. Chengdu:Archives of CADI, 2012(in Chinese).
文章导航

/