[1] 占云.超燃冲压发动机的第一个40年[J].飞航导弹, 2002(9):32-40, 54. ZHAN Y. Scramjet's first 40 years[J]. Winged Missiles Journal, 2002(9):32-40, 54(in Chinese).
[2] 王巍巍,郭琦.美国典型的高超声速技术研究计划(上)[J].燃气涡轮试验与研究, 2013(3):53-58. WANG W W, GUO Q. Typical hypersonic technology research programs in America (Part Ⅰ)[J]. Gas Turbine Experiment and Research, 2013(3):53-58(in Chinese).
[3] PEEBLES C. Road to Mach 10:lessons learn from the X-43A flight research program[M]. Reston, VA:Library of Flight Series, AIAA, 2008:36-78.
[4] SHELLY F, CHARLES M, KENNETH R, et al. Hyper-X Mach 7 scramjet design, ground test and flight result:AIAA-2005-3322[R]. Reston, VA:AIAA, 2005.
[5] 姚源,陈萱.美国发布SR-72高超声速飞机概念[J].中国航天, 2013(12):39-41. TAO Y, CHEN X. US has released the SR-72 hypersonic aircraft concept[J]. Aerospace China, 2013(12):39-41(in Chinese).
[6] 田浩.三维可压缩流动的非定常分离及飞行器运动/流动耦合的非线性动态稳定性[D].绵阳:中国空气动力研究与发展中心, 2015:7-9. TIAN H. Research on three-dimensional compressible unsteady flow separation and nonlinear dynamic stability for the coupling between the aircraft's motion and fluid flow[D]. Mianyang:China Aerodynamics Research and Development Center, 2015:7-9(in Chinese).
[7] 李乾.近空间飞行器气动运动耦合特性研究[D].绵阳:中国空气动力研究与发展中心, 2017:1-3. LI Q. Investigation of the aerodynamics and flight dynamics coupling for near space vehicle[D].Mianyang:China Aerodynamics Research and Development Center,2017:1-3(in Chinese).
[8] 叶友达,张涵信,张现峰.高空高速飞行器强迫俯仰运动的滚转特性数值模拟研究[C]//第十五届全国计算流体力学会议.北京:中国力学学会,2012:1068-1073. YE Y D, ZHANG H X, ZHANG X F. Numerical investigation of the characteristics of double degree-of-freedom motion of the hypersonic vehicle[C]//Proceedings of the Fifth National Conference for Computational Fluid Dynamics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2012:1068-1073(in Chinese).
[9] 甄华萍,蒋崇文.高超声速技术验证飞行器HTV-2综述[J].飞航导弹, 2013(6):7-13. ZHEN H P, JIANG C W. Overview of hypersonic technology verification vehicle HTV-2[J]. Winged Missiles Journal, 2013(6):7-13(in Chinese).
[10] YE Y D, ZHAO Z L, TIAN H, et al. The stability analysis of rolling motion of hypersonic vehicles and its validations[J]. Scientia Sinica Physica, Mechanica&Astronomica, 2014, 57:2194-2204.
[11] YE Y D, TIAN H, ZHANG X F. The stability of rolling motion of hypersonic vehicles with slender configuration under pitching maneuvering[J]. Scientia Sinica Physica, Mechanica&Astronomica, 2015, 58:064701.
[12] PHILLIPS W H. Effect of rolling on longitudinal and directional stability:NASA TN-1627[R]. Wangshington, D.C.:NASA, 1948.
[13] MEHRA R K, CARROLL J V. Bifurcation analysis of aircraft high angle-of-attack flight dynamics:AIAA-1980-1599[R]. Reston, VA:AIAA, 1980.
[14] KANDIL O A, MENZIES M A. Effective control of simulated wing rock in subsonic flow:AIAA-1997-0831[R]. Reston, VA:AIAA, 1997.
[15] LIU W, ZHANG H X, ZHAO H Y. Numerical simulation and physical characteristics analysis for slender wing rock[J]. Journal of Aircraft, 2006, 43(3):858-861.
[16] 杨小亮,刘伟,赵云飞,等. 80°后掠三角翼强迫俯仰、自由滚转双自由度耦合运动特性数值研究[J].空气动力学报, 2011, 29(4):421-426. YANG X L, LIU W, ZHAO Y F, et al. Numerical investigation of the characteristics of double degree-of-freedom motion of an 80° delta wing in force-pitch and free-roll[J]. Acta Aerodynamica Sinica, 2011, 29(4):421-426(in Chinese).
[17] 张涵信,袁先旭,叶友达,等.飞船返回舱俯仰振荡的动态稳定性研究[J].空气动力学学报, 2002, 20(3):247-259. ZHANG H X, YUAN X X, YE Y D, et al. Research on the dynamic stability of an orbital reentry vehicle in pitching[J]. Acta Aerodynamica Sinica, 2002, 20(3):247-259(in Chinese).
[18] 袁先旭,张涵信,谢昱飞.飞船返回舱再入俯仰动稳定吸引子数值仿真[J].空气动力学学报, 2007, 25(4):431-436. YUAN X X, ZHANG H X, XIE Y F. Numerical simulation for dynamic stability in pitching of unfinned reentry capsule and bifurcation with Mach number prediction[J]. Acta Aerodynamica Sinica, 2007, 25(4):431-436(in Chinese).
[19] 李乾,赵忠良,叶友达,等.一种临近空间飞行器静/动态气动特性研究[J].空气动力学学报, 2017, 35(4):504-509. LI Q, ZHAO Z L, YE Y D, et al. Numerical and experimental investigation on aerodynamic characteristics for one typical near space vehicle[J]. Acta Aerodynamica Sinica, 2017, 35(4):504-509(in Chinese).
[20] 李乾,赵忠良,王晓冰,等.一种近空间高超声速飞行器滚转稳定性研究[J].航空学报, 2018, 39(3):121553. LI Q, ZHAO Z L, WANG X B, et al. The investigation on rolling stability for one near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121553(in Chinese).
[21] ADAMCZAK D W, BOLENDER M A. The flight dynamics of the HIFiRE Flight 6 research vehicle[C]//AIAA Atmospheric Flight Mechanics Conference, 2015:1-21.
[22] 刘绪.高超声速内外流一体化飞行器动态特性研究[D].长沙:国防科学技术大学, 2011:71-78. LIU X. Investigation of dynamic characteristics of hypersonic airframe/propulsion integrative vehicle[D]. Changsha:National University of Defense Technology, 2011:71-78(in Chinese).
[23] 刘绪,刘伟,周云龙,等.吸气式内外流一体化飞行器动导数数值模拟[J].空气动力学学报, 2015, 33(2):147-155. LIU X, LIU W, ZHOU Y L, et al. Numerical simulation of dynamic derivatives for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 33(2):147-155(in Chinese).
[24] 赵忠良,杨晓娟,蒋卫民,等.高超声速飞行器通流模拟方法与风洞验证技术[J].航空学报, 2014, 35(11):2932-2938. ZHAO Z L, YANG X J, JIANG W M, et al. Through-flow simulation method and wind tunnel validation technique for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2932-2938(in Chinese).
[25] CHEN J Z, ZHAO Z L, WANG X B, et al. Research on dynamic derivatives test technique for integrative hypersonic vehicle with internal and external flow in wind tunnel[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 2017:1-7.
[26] 达兴亚,陶洋,赵忠良.基于预估校正和嵌套网格的虚拟飞行数值模拟[J].航空学报, 2012, 33(6):977-983. DA X Y, TAO Y, ZHAO Z L. Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):977-983(in Chinese).
[27] Meet the SR-72[EB/OL].(2016-12-13)[2019-11-18]. http://www.lockheedmartin.com/us/news/features/2015/sr-72.html.
[28] WANG J F, CAI J S, LIU C Z, et al. Aerodynamic configuration integration design of hypersonic cruise aircraft with inward-turning inlets[J]. Chinese Journal of Aeronautics, 2017, 30(4):1349-1362.
[29] REGAN F J. Roll damping moment measurements for the basic finner at subsonic and supersonic speeds:NAVORD Report 6652[R]. White Oak, MD:U.S. Naval Ordnance Laboratory, 1964.