流体力学与飞行力学

吸气式高超声速飞行器俯仰/滚转耦合运动特性

  • 丛戎飞 ,
  • 叶友达 ,
  • 赵忠良
展开
  • 1. 中国空气动力研究与发展中心 高速空气动力研究所, 绵阳 621000;
    2. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    3. 国家计算流体力学实验室, 北京 100083

收稿日期: 2019-10-17

  修回日期: 2019-12-04

  网络出版日期: 2019-11-28

Characteristics of air-breathing hypersonic vehicle in force-pitch and free-roll coupling motion

  • CONG Rongfei ,
  • YE Youda ,
  • ZHAO Zhongliang
Expand
  • 1. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. National Laboratory for Computational Fluid Dynamics, Beijing 100083, China

Received date: 2019-10-17

  Revised date: 2019-12-04

  Online published: 2019-11-28

摘要

针对一种类似SR-72构型的吸气式高超声速飞机开展了进气道通流状态下俯仰/滚转耦合运动相关研究。通过数值模拟获得了滚转单自由度静稳定性、动稳定性以及强迫俯仰/自由滚转运动下的两自由度耦合动稳定性,研究了飞行器转动惯量以及俯仰运动频率对耦合运动的影响,简要分析了耦合运动的机理。研究发现虽然此飞行器具有滚转静稳定性和动稳定性,但是在强迫俯仰/自由滚转运动过程中,滚转通道却出现了小幅度振荡与大振幅振荡交替出现的情况,最大滚转角超过70°。小幅度振荡出现在正弦俯仰振荡的上半周期,其振荡频率随轴向转动惯量增加而降低,幅值随俯仰振荡频率增加而增大;大振幅振荡出现在下半周期,其幅值基本不变,而振荡频率与俯仰振荡一致。这种现象基本不受惯性耦合作用影响,可以认为是由气动力主导的。

本文引用格式

丛戎飞 , 叶友达 , 赵忠良 . 吸气式高超声速飞行器俯仰/滚转耦合运动特性[J]. 航空学报, 2020 , 41(4) : 123588 -123588 . DOI: 10.7527/S1000-6893.2019.23588

Abstract

In this paper, the pitch/roll coupling motion of an air-breathing hypersonic aircraft similar to the SR-72 configuration is studied. Through the numerical simulation, the static stability, dynamic stability and the two-degree-of-freedom coupling dynamic stability under the forced pitching/free rolling motion are obtained. The influence of rotary inertia and pitch frequency on the coupling motion is studied, and the mechanism of coupling motion is analyzed. It is found that although the model has both static and dynamic rolling stability, in the process of forced pitch/free rolling motion, small amplitude oscillations and large amplitude oscillations occur alternately in the rolling channel, the maximum roll angle exceeds 70°. The small amplitude oscillation occurres in the upper half period of the pitch oscillation, the oscillation frequency decreases with the increase of axial inertia, the amplitude increases with the pitching oscillation frequency. The large amplitude oscillation occurred in the lower half period of the pitch oscillation, the amplitude is basically unchanged, while the oscillation frequency is consistent with the pitch oscillation. This phenomenon is basically unaffected by inertial coupling, and can be considered to be dominated by aerodynamic forces.

参考文献

[1] 占云.超燃冲压发动机的第一个40年[J].飞航导弹, 2002(9):32-40, 54. ZHAN Y. Scramjet's first 40 years[J]. Winged Missiles Journal, 2002(9):32-40, 54(in Chinese).
[2] 王巍巍,郭琦.美国典型的高超声速技术研究计划(上)[J].燃气涡轮试验与研究, 2013(3):53-58. WANG W W, GUO Q. Typical hypersonic technology research programs in America (Part Ⅰ)[J]. Gas Turbine Experiment and Research, 2013(3):53-58(in Chinese).
[3] PEEBLES C. Road to Mach 10:lessons learn from the X-43A flight research program[M]. Reston, VA:Library of Flight Series, AIAA, 2008:36-78.
[4] SHELLY F, CHARLES M, KENNETH R, et al. Hyper-X Mach 7 scramjet design, ground test and flight result:AIAA-2005-3322[R]. Reston, VA:AIAA, 2005.
[5] 姚源,陈萱.美国发布SR-72高超声速飞机概念[J].中国航天, 2013(12):39-41. TAO Y, CHEN X. US has released the SR-72 hypersonic aircraft concept[J]. Aerospace China, 2013(12):39-41(in Chinese).
[6] 田浩.三维可压缩流动的非定常分离及飞行器运动/流动耦合的非线性动态稳定性[D].绵阳:中国空气动力研究与发展中心, 2015:7-9. TIAN H. Research on three-dimensional compressible unsteady flow separation and nonlinear dynamic stability for the coupling between the aircraft's motion and fluid flow[D]. Mianyang:China Aerodynamics Research and Development Center, 2015:7-9(in Chinese).
[7] 李乾.近空间飞行器气动运动耦合特性研究[D].绵阳:中国空气动力研究与发展中心, 2017:1-3. LI Q. Investigation of the aerodynamics and flight dynamics coupling for near space vehicle[D].Mianyang:China Aerodynamics Research and Development Center,2017:1-3(in Chinese).
[8] 叶友达,张涵信,张现峰.高空高速飞行器强迫俯仰运动的滚转特性数值模拟研究[C]//第十五届全国计算流体力学会议.北京:中国力学学会,2012:1068-1073. YE Y D, ZHANG H X, ZHANG X F. Numerical investigation of the characteristics of double degree-of-freedom motion of the hypersonic vehicle[C]//Proceedings of the Fifth National Conference for Computational Fluid Dynamics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2012:1068-1073(in Chinese).
[9] 甄华萍,蒋崇文.高超声速技术验证飞行器HTV-2综述[J].飞航导弹, 2013(6):7-13. ZHEN H P, JIANG C W. Overview of hypersonic technology verification vehicle HTV-2[J]. Winged Missiles Journal, 2013(6):7-13(in Chinese).
[10] YE Y D, ZHAO Z L, TIAN H, et al. The stability analysis of rolling motion of hypersonic vehicles and its validations[J]. Scientia Sinica Physica, Mechanica&Astronomica, 2014, 57:2194-2204.
[11] YE Y D, TIAN H, ZHANG X F. The stability of rolling motion of hypersonic vehicles with slender configuration under pitching maneuvering[J]. Scientia Sinica Physica, Mechanica&Astronomica, 2015, 58:064701.
[12] PHILLIPS W H. Effect of rolling on longitudinal and directional stability:NASA TN-1627[R]. Wangshington, D.C.:NASA, 1948.
[13] MEHRA R K, CARROLL J V. Bifurcation analysis of aircraft high angle-of-attack flight dynamics:AIAA-1980-1599[R]. Reston, VA:AIAA, 1980.
[14] KANDIL O A, MENZIES M A. Effective control of simulated wing rock in subsonic flow:AIAA-1997-0831[R]. Reston, VA:AIAA, 1997.
[15] LIU W, ZHANG H X, ZHAO H Y. Numerical simulation and physical characteristics analysis for slender wing rock[J]. Journal of Aircraft, 2006, 43(3):858-861.
[16] 杨小亮,刘伟,赵云飞,等. 80°后掠三角翼强迫俯仰、自由滚转双自由度耦合运动特性数值研究[J].空气动力学报, 2011, 29(4):421-426. YANG X L, LIU W, ZHAO Y F, et al. Numerical investigation of the characteristics of double degree-of-freedom motion of an 80° delta wing in force-pitch and free-roll[J]. Acta Aerodynamica Sinica, 2011, 29(4):421-426(in Chinese).
[17] 张涵信,袁先旭,叶友达,等.飞船返回舱俯仰振荡的动态稳定性研究[J].空气动力学学报, 2002, 20(3):247-259. ZHANG H X, YUAN X X, YE Y D, et al. Research on the dynamic stability of an orbital reentry vehicle in pitching[J]. Acta Aerodynamica Sinica, 2002, 20(3):247-259(in Chinese).
[18] 袁先旭,张涵信,谢昱飞.飞船返回舱再入俯仰动稳定吸引子数值仿真[J].空气动力学学报, 2007, 25(4):431-436. YUAN X X, ZHANG H X, XIE Y F. Numerical simulation for dynamic stability in pitching of unfinned reentry capsule and bifurcation with Mach number prediction[J]. Acta Aerodynamica Sinica, 2007, 25(4):431-436(in Chinese).
[19] 李乾,赵忠良,叶友达,等.一种临近空间飞行器静/动态气动特性研究[J].空气动力学学报, 2017, 35(4):504-509. LI Q, ZHAO Z L, YE Y D, et al. Numerical and experimental investigation on aerodynamic characteristics for one typical near space vehicle[J]. Acta Aerodynamica Sinica, 2017, 35(4):504-509(in Chinese).
[20] 李乾,赵忠良,王晓冰,等.一种近空间高超声速飞行器滚转稳定性研究[J].航空学报, 2018, 39(3):121553. LI Q, ZHAO Z L, WANG X B, et al. The investigation on rolling stability for one near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121553(in Chinese).
[21] ADAMCZAK D W, BOLENDER M A. The flight dynamics of the HIFiRE Flight 6 research vehicle[C]//AIAA Atmospheric Flight Mechanics Conference, 2015:1-21.
[22] 刘绪.高超声速内外流一体化飞行器动态特性研究[D].长沙:国防科学技术大学, 2011:71-78. LIU X. Investigation of dynamic characteristics of hypersonic airframe/propulsion integrative vehicle[D]. Changsha:National University of Defense Technology, 2011:71-78(in Chinese).
[23] 刘绪,刘伟,周云龙,等.吸气式内外流一体化飞行器动导数数值模拟[J].空气动力学学报, 2015, 33(2):147-155. LIU X, LIU W, ZHOU Y L, et al. Numerical simulation of dynamic derivatives for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 33(2):147-155(in Chinese).
[24] 赵忠良,杨晓娟,蒋卫民,等.高超声速飞行器通流模拟方法与风洞验证技术[J].航空学报, 2014, 35(11):2932-2938. ZHAO Z L, YANG X J, JIANG W M, et al. Through-flow simulation method and wind tunnel validation technique for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2932-2938(in Chinese).
[25] CHEN J Z, ZHAO Z L, WANG X B, et al. Research on dynamic derivatives test technique for integrative hypersonic vehicle with internal and external flow in wind tunnel[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 2017:1-7.
[26] 达兴亚,陶洋,赵忠良.基于预估校正和嵌套网格的虚拟飞行数值模拟[J].航空学报, 2012, 33(6):977-983. DA X Y, TAO Y, ZHAO Z L. Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):977-983(in Chinese).
[27] Meet the SR-72[EB/OL].(2016-12-13)[2019-11-18]. http://www.lockheedmartin.com/us/news/features/2015/sr-72.html.
[28] WANG J F, CAI J S, LIU C Z, et al. Aerodynamic configuration integration design of hypersonic cruise aircraft with inward-turning inlets[J]. Chinese Journal of Aeronautics, 2017, 30(4):1349-1362.
[29] REGAN F J. Roll damping moment measurements for the basic finner at subsonic and supersonic speeds:NAVORD Report 6652[R]. White Oak, MD:U.S. Naval Ordnance Laboratory, 1964.
文章导航

/