固体力学与飞行器总体设计

基于飞行参数数据挖掘的军机健康评估技术

  • 房冠成 ,
  • 贾大鹏 ,
  • 刘毅飞 ,
  • 刘海涛
展开
  • 中国航空工业成都飞机设计研究所, 成都 610091

收稿日期: 2019-09-10

  修回日期: 2019-09-25

  网络出版日期: 2019-11-20

基金资助

航空科学基金(017ZD11009)

Military airplane health assessment technique based on data mining of flight parameters

  • FANG Guancheng ,
  • JIA Dapeng ,
  • LIU Yifei ,
  • LIU Haitao
Expand
  • AVIC Chengdu Aircraft Design and Institute, Chengdu 610091

Received date: 2019-09-10

  Revised date: 2019-09-25

  Online published: 2019-11-20

Supported by

Aeronautical Science Foundation of China (017ZD11009)

摘要

以新型战机为代表的现代武器装备的参数数据越来越庞大,提出了基于飞行参数数据挖掘的军机健康评估技术。首先构建了军机健康评估设计及应用的"V"型架构,将数据获取、数据分析、方法应用、挖掘建模、评估结果和决策应用等流程融入到数据层、业务层、应用层等功能层级中。然后,综合运用改进故障树分析、高斯混合模型、层次分析法等方法,构建了适用于军机健康评估的架构、方法及流程。最后,以某军机实际飞行数据进行了应用分析,证明了所提方法的有效性和可行性。

本文引用格式

房冠成 , 贾大鹏 , 刘毅飞 , 刘海涛 . 基于飞行参数数据挖掘的军机健康评估技术[J]. 航空学报, 2020 , 41(6) : 523458 -523458 . DOI: 10.7527/S1000-6893.2019.23458

Abstract

Parameter data of modern weapon equipment represented by new warplane becomes more and more huge. This paper puts forward a military airplane health assessment based on the data mining of flight parameters. First, this paper sets up a "V" structure for health assessment of military airplane in the process of design and application, data acquisition, data analysis, method application, mining modeling, healthy assessment, decision application, and etc. These processes are integrated into a data layer, business layer, and applied layer. Then, the improvement FTA analysis, the Gauss mixture model, and analytic hierarchy process are used to set up the architecture, methodology, and process for military airplane health assessment. Finally, the application results of actual flight date of some military aircraft proved the feasibility and validity of the proposed method.

参考文献

[1] 王少萍. 大型飞机机载系统预测与健康管理关键技术[J].航空学报, 2014, 35(6):1459-1472. WANG S P. Prognostics and health management key technology of aircraft airborne system[J]. Acta Aeronautica et Astronautica, 2014, 35(6):1459-1472(in Chinese).
[2] 孙雪, 马静华. 飞机全生命周期的大数据[J]. 大飞机, 2017(11):18-21. SUN X, MA J H. Big data in aircraft life cycle[J]. Jetliner, 2017(11):18-21(in Chinese).
[3] TOLLE K M, TANSLEY D, HEY A J G. The fourth paradigm:Data-intensive scientific discovery[J]. Proceedings of the IEEE, 2011, 99(8):1334-1337.
[4] CHEN Z S, YANG Y M, HU Z. A technical framework and roadmap of embedded diagnostics and prognostics for complex mechanical systems in prognostics and health management systems[J]. IEEE Transactions on Reliability, 2012, 61(2):314-322.
[5] BRYAN M, SANTANU D, KANISHKA B, et al. Discovering anomalous aviation safety events using scalable data mining algorithms[J]. Journal of Aerospace Information Systems,2013,10(10):467-475.
[6] MONROE G A, FREEMAN K, JONES K L. IT data mining tool uses in aerospace:NASA ARC-E-DAA-TN 4694[R]. Washington, D.C.:NASA, 2012.
[7] 王文正, 郑鹍鹏, 陈功, 等. 数据挖掘技术在飞行试验数据分析和气动参数辨识中的应用研究[J].空气动力学学报, 2016,34(6):778-782. WANG W Z, ZHENG K P, CHEN G, et al. Application research of data-mining method to flight test data analysis and aerodynamic parameter identification[J]. Acta Aerodynamica Sinica, 2016,34(6):778-782(in Chinese).
[8] 宋飞, 秦世引. 卫星姿态控制系统在轨实时健康评估[J]. 北京航空航天大学学报, 2014,40(11):1581-1588. SONG F, QIN S Y. On-orbit real-time health assessment of satellite attitude control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014,40(11):1581-1588(in Chinese).
[9] 陈龙志, 曾庆华, 贾涛. 基于健康行为模型的飞行器控制系统健康评估[J]. 航空计算技术, 2014,44(4):13-17. CHEN L Z, ZENG Q H, JIA T. Health assessment of flight control system based on health behavior model[J]. Aeronautical Computing Technique, 2014,44(4):13-17(in Chinese).
[10] FANG S, LIN T. Indoor location system based on discrimination-adaptive neural network in IEEE 802.11 environment[J]. IEEE Transactions on Neural Networks, 2008, 19(11):1973-1978.
[11] PAN J J, KWOK J T, YANG Q, et al. Multidimensional vector regression for accurate and low-cost location estimation in pervasive computing[J]. IEEE Transactions on Knowledge and Date Engineering, 2006, 18(9):1181-1193.
[12] 陈淼. 基于多高斯混合模型的WLAN室内定位系统[J]. 华中科技大学学报(自然科学版), 2012, 40(4):67-71. CHEN M. WLAN indoor location system based on multi-Gaussian mixture model[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2012, 40(4):67-71(in Chinese).
[13] PECHT M. Prognostics and health management of electronics[M]. Hoboken:Wiley Online Library, 2008.
[14] 何宇廷, 高潮, 安涛,等. 试验与服役数据融合的飞机结构安全寿命分析[J]. 空军工程大学学报, 2015, 16(1):1-5. HE Y T, GAO C, AN T. An analysis of safe-life for aircraft structure based on the fusion of test data and service data[J]. Journal of Air Force Engineering University (Natural Science Edition), 2015, 16(1):1-5(in Chinese).
[15] 张良均. 数据挖掘:实用实例分析[M]. 北京:机械工业出版社, 2013. ZHANG L J. Data mining:Practical example analysis[M]. Beijing:Machinery Industry Press, 2013(in Chinese).
[16] 张宇飞, 么子云, 唐松林, 等. 一种基于主成分分析和支持向量机的发动机故障诊断方法[J]. 中国机械工程, 2016, 27(24):3307-3311. ZHANG Y F, ME Z Y, TANG S L. An engine fault diagnosis method based on PCL and SVM[J]. China Mechanical Engineering, 2016, 27(24):3307-3311(in Chinese).
[17] 房冠成, 吕震宙, 魏鹏飞. 结构系统可靠性及可靠性灵敏度分析的改进子集模拟法[J]. 航空学报, 2012, 33(8):1440-1447. FANG G C, LYU Z Z, WEI P F. Modified subset simulation method for reliability and reliability sensitivity analysis of structural system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1440-1447(in Chinese).
[18] 张红旗, 邵晓东, 苏春, 等. 改进FMEA与故障传播模型混合故障诊断方法[J].机械科学与技术,2017, 36(1):23-28. ZHANG H Q, SHAO X D, SU C. Integrated fault diagnosis method based on improved FMEA and failure propagation model[J]. Mechanical Science and Technology for Aerospace Engineering,2017, 36(1):23-28(in Chinese).
[19] 龙铭, 文章, 黄文艺, 等. 滚动轴承故障程度评估的AR-GMM方法[J].机械科学与技术,2016, 35(8):1183-1188. LONG M, WEN Z, HUANG W Y. Assessment of rolling bearing fault degree using AR-GMM[J]. Mechanical Science and Technology for Aerospace Engineering,2016, 35(8):1183-1188(in Chinese).
[20] 李巍华, 戴炳雄, 张绍辉. 基于小波包熵和高斯混合模型的轴承性能退化评估[J]. 振动与冲击, 2013, 32(21):35-40. LI W H, DAI B X, ZHANG S H. Bearing performance degradation assessment based on Wavelet packet entropy and Gaussian mixture model[J]. Journal of Vibration and Shock, 2013, 32(21):35-40(in Chinese).
[21] JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing,2006,20(7):1483-1510.
[22] LIAO L, LEE J. A novel method for machine performance degradation assessment based on fixed cycle features test[J]. Journal of Sound and Vibration,2009,326(3-5):894-908.
[23] 龚学兵, 王日新, 徐敏强. 飞轮传感器的高斯混合模型故障检测方法[J]. 宇航学报, 2015,36(6):699-705. GONG X B, WANG R X, XU M Q. Gaussian mixed model-based fault detection method for flywheel sensor[J]. Journal of Astronautics, 2015,36(6):699-705(in Chinese).
[24] 汪群峰, 金佳佳, 米传民, 等. 基于灰色关联深度系数的评价指数客观权重极大熵配置模型[J]. 控制与决策, 2013, 28(2):235-240. WANG Q F, JIN J J, MI C M. Maximum entropy configuration model of objective index weight based on grey correlation deep coefficient[J]. Control and Decision, 2013, 28(2):235-240(in Chinese).
[25] 崔建国, 林泽力, 吕瑞, 等. 基于模糊灰色聚类和组合赋权法的飞机健康状态综合评估方法[J]. 航空学报, 2014,35(3):764-772. CUI J G, LIN Z L, LYU R, et al. Comprehensive assessment method of aircraft health status based on fuzzy gray clustering and combination weighting[J]. Acta Aeronautica et Astronautica Sinica, 2014,35(3):764-772(in Chinese).
文章导航

/