[1] 亓凯,杨任农,左家亮,等. 空战飞机嵌入式训练系统的研究[J]. 火力与指挥控制, 2011, 36(9):165-171. QI K, YANG R N, ZUO J L, et al. Research on embedded training system in combat aircraft[J]. Fire Control & Command Control, 2011, 36(9):165-171(in Chinese).
[2] 耿振余, 孙金标, 李德龙,等. 机载嵌入式战术对抗训练系统设计[J]. 系统仿真学报, 2014, 26(12):2882-2886. GENG Z Y, SUN J B, LI D L, et al. Design of airborne embedded training system of air combat counterwork[J]. Journal of System Simulation, 2014, 26(12):2882-2886(in Chinese).
[3] 陈凌,吴冰,胡志伟, 等. 机载嵌入式空战训练的研究与进展[J]. 计算机仿真,2010,27(2):108-112. CHEN L, WU B, HU Z W, et al. The research and advances on airborne embedded training for air combat[J]. computer simulation, 2010, 27(2):108-112(in Chinese).
[4] 耿振余,刘思彤,李德龙. 嵌入式空战训练中虚拟智能对手的生成研究[J]. 现代防御技术,2014, 42(3):172-177(in Chinese). GENG Z Y, LIU S T, LI D L. Generating virtual intelligent adversary in embedded training of air combat counterwork[J]. Modern Defense Technology, 2014, 42(3):172-177(in Chinese).
[5] 袁坤刚, 张靖, 刘波, 等. 目标飞机自主空战战术机动仿真[J]. 中国电子科学研究院学报,2013, 8(3):295-299. YUAN K G, ZHANG J, LIU B, et al. Simulation of target-aircraft tactical maneuvers in autonomous aircombat[J]. Journal of China Academy of Electronics and Information Technology, 2013, 8(3):295-299(in Chinese).
[6] 董彦非, 阴小晖, 彭世冲. 空战仿真目标机战法实现[J]. 南昌航空大学学报(自然科学版), 2012, 26(1):61-65. DONG Y F, YIN X H, PENG S C. The realization of target aircraft combat plan in air combat simulation[J]. Journal of Nanchang Hangkong University (Nature Science), 2012, 26(1):61-65(in Chinese).
[7] 刘纯,李维,刘洁,等. 高级教练机嵌入式训练系统应用[J]. 兵器装备工程学报, 2017(4):26-31. LIU C, LI W, LIU J, et al. Application of advanced trainer embedded training system[J]. Journal of Ordnance Equipment Engineering, 2017(4):26-31(in Chinese).
[8] 吴雄,刘纯. 外军战斗机空战战术训练系统应用研究[J]. 兵器装备工程学报, 2017(7):37-43. WU X, LIU C. Research on the application of foreign fighter air combat tactical training system[J]. Journal of Ordnance Equipment Engineering, 2017(7):37-43(in Chinese).
[9] 周思羽, 吴文海, 张楠,等. 自主空战机动决策方法综述[J]. 航空计算技术, 2012,42(1):27-31. ZHOU S Y, WU W H, ZHANG N, et al. Overview of autonomous air combat maneuver decision[J]. Aeronautical Computing Technique, 2012, 42(1):27-31(in Chinese).
[10] 董彦非, 郭基联, 张恒喜. 空战机动决策方法研究[J]. 火力与指挥控制, 2002, 27(2):75-78. DONG Y F, GUO J L, ZHANG H X. The methods of air combat maneuvering decision[J]. Fire Control & Command Control, 2002, 27(2):75-78(in Chinese).
[11] 黄长强. 未来空战过程智能化关键技术研究[J]. 航空兵器, 2019, 26(1):11-19. HUANG C Q. Research on key technology of future air combat process intelligentization[J]. Aero Weaponry, 2019, 26(1):11-19(in Chinese).
[12] 孙永芹, 孙涛, 范洪达, 等. 现代空战机动决策研究[J]. 海军航空工程学院学报, 2009, 24(5):573-577. SUN Y Q, SUN T, FAN H D, et al. Research on maneuvering decision for modern air combat[J]. Journal of Naval Aeronautical and Astronautical University, 2009, 24(5):573-577(in Chinese).
[13] PAN Q, ZHOU D, HUANG J, et al. Maneuver decision for cooperative close-range air combat based on state predicted influence diagram[C]//2017 IEEE International Conference on Information and Automation (ICIA). Piscataway:IEEE Press, 2017:726-731.
[14] 钱炜祺, 车竞, 何开锋. 基于矩阵博弈的空战决策方法[C]//2014第二届中国指挥控制大会. 北京:中国指挥控制学会,2014:409-413. QIAN W Q, CHE J, HE K F. Air combat decision method based on game-matrix approach[C]//The 2nd China Conference on Command and Control. Beijing:Chinese Institute of Command and Control, 2014:409-413(in Chinese).
[15] 郭昊, 周德云, 张堃. 无人作战飞机空战自主机动决策研究[J]. 电光与控制, 2010, 17(8):28-32. GUO H, ZHOU D Y, ZHANG K. Study on UCAV autonomous air combat maneuvering decision-making[J]. Electronics Optics & Control, 2019, 17(8):28-32(in Chinese).
[16] 马耀飞, 马小乐. 一种空战智能决策方法研究[C]//2014中国制导、导航与控制学术会议,2014:2449-2454. MA Y F, MA X L.The methods of air combat intelligent decision[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, 2014:2449-2454(in Chinese).
[17] 黄长强, 赵克新, 韩邦杰,等. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10):166-171. HUANG C Q, ZHAO K X, HAN B J, et al. Maneuvering decision-making method of UAV based on approximation dynamic programming[J]. Journal of Electronics & Information Technology, 2018, 40(10):166-171(in Chinese).
[18] MCGREW J S, HOW J P, WILLIAMS B, et al. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5):1641-1654.
[19] 张立鹏, 魏瑞轩, 李霞. 无人作战飞机空战自主战术决策方法研究[J]. 电光与控制, 2012,19(2):92-96. ZHANG L P, WEI R X, LI X. Autonomous tactical decision-making of UCAVs in air combat[J]. Electronics Optics & Control, 2012, 19(2):92-96(in Chinese).
[20] 张磊. 无人作战飞机自主决策技术研究[J]. 航空科学技术, 2014,25(5):49-53. ZHANG L. Research on autonomous decision-making technology of UCAV[J]. Aeronautical Science & Technology,2014, 25(5):49-53(in Chinese).
[21] 唐传林, 黄长强, 丁达理,等. 一种UCAV自主空战智能战术决策方法[J]. 指挥控制与仿真, 2015,37(5):5-11. TANG C L, HUANG C Q, DING D L, et al. A method of intelligent tactical decision making for UCAV autonomous air combat[J]. Command Control & Simulation, 2015, 37(5):5-11(in Chinese).
[22] MA S, ZHANG H, YANG G. Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation[J]. Aerospace Science and Technology, 2017, 67:49-53.
[23] ERNEST N, COHEN K, KIVELEVITCH E. Genetic fuzzy Trees and their applications towards autonomous training and control of a squadron of unmanned combat aerial vehicles[J]. Unmanned Systems, 2015, 3(3):185-204.
[24] 孟光磊, 罗元强, 梁宵,等. 基于动态贝叶斯网络的空战决策方法[J]. 指挥控制与仿真, 2017,39(3):49-54. MENG G L, LUO Y Q, LIANG X, et al. Air combat decision-making method based on dynamic bayesian network[J]. Command Control & Simulation, 2017, 39(3):49-54(in Chinese).
[25] HUANG C Q, DONG K S, HUANG H Q, et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29(1):86-97.
[26] VOLODYMYR M, KORAY K, DAVID S, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533.
[27] LI H, WEI T, REN A, et al. Deep reinforcement learning:Framework, applications, and embedded implementations[C]//2017 IEEE/ACM International Conference on Computer-Aided Design(ICCAD). Piscatawy:IEEE Press, 2017:13-16.
[28] 左家亮, 杨任农, 张滢,等. 基于启发式强化学习的空战机动智能决策[J]. 航空学报, 2017,38(10):321168. ZUO J L, YANG R N, ZHANG Y, et al. Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):321168(in Chinese).
[29] 方君, 闫文君, 邓向阳,等. 基于Q-学习和行为树的CGF空战行为决策[J]. 计算机与现代化, 2017(5):39-44. FANG J, YAN W J, DENG X Y, et al. Air bat strategies of CGF based on Q-learning and behavior tree[J]. Computer and Modernization, 2017(5):39-44(in Chinese).
[30] 张强, 杨任农, 俞利新, 等. 基于Q-network强化学习的超视距空战机动决策[J]. 空军工程大学学报(自然科学版), 2018, 19(6):12-18. ZHANG Q, YANG R N, YU L X, et al. BVR air combat maneuvering decision by using Q-network reinforcement learning[J]. Journal of Air Force Engineering University (Nature Science Edition), 2018, 19(6):12-18(in Chinese).
[31] 杜海文, 崔明朗, 韩统, 等. 基于多目标优化与强化学习的空战机动决策[J]. 北京航空航天大学学报, 2018, 44(11):4-13. DU H W, CUI M L, HAN T, et al. Maneuvering decision in air combat based on multi-objective optimization and reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11):4-13(in Chinese).
[32] 毛梦月, 张安, 周鼎, 等. 基于机动预测的强化学习无人机空中格斗研究[J]. 电光与控制, 2019, 26(2):9-14. MAO M Y, ZHANG A, ZHOU D, et al. Reinforcement learning of UCAV air combat based on maneuver prediction[J]. Electronics Optics & Control, 2019, 26(2):9-14(in Chinese).
[33] 张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报, 2019, 40(3):322493. ZHANG J, HE Y, PENG Y N, et al. Neural network and artificial potential field based cooperative and adversarial path planning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322493(in Chinese).
[34] LUO P, XIE J, CHE W. Q-learning based air combat target assignment algorithm[C]//2016 IEEE International Conference on Systems, Man, and Cybernetics(SMC). Piscataway:IEEE Press, 2016:779-783.
[35] 黄长强, 唐上钦. 从"阿法狗"到"阿法鹰"——论无人作战飞机智能自主空战技术[J]. 指挥与控制学报, 2016, 2(3):261-264. HUANG C Q, TANG S Q. From Alphago to Alphaeagle:On the intelligent autonomous air combat technology for UCAV[J]. Journal of Command and Control, 2016, 2(3):261-264(in Chinese).
[36] 吴娜, 刁联旺. 基于机器学习的博弈对抗模型优化框架软件系统设计[C]//第六届中国指挥控制大会,2018:311-314. WU N, DIAO L W. Design of framework software System used to optimize of game antagonism model based on machine learning[C]//The 6th China Conference on Command and Control, 2018:311-314(in Chinese).
[37] 曹慧敏, 黄安祥, 雷祥. 空战临战态势评估方法研究[J]. 系统仿真学报, 2019, 31(2):95-100. CAO H M, HUANG A X, LEI X. Evaluation method of imminent battle situation in air combat[J]. Journal of System Simulation, 2019, 31(2):95-100(in Chinese).
[38] 郝志伟. 空战中的多目标威胁评估方法[J]. 弹箭与制导学报, 2016,36(1):177-181. HAO Z W. Threat assessment method of multi-target in air combat[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(1):177-181(in Chinese).
[39] LU C, ZHOU Z, LIU H, et al. Situation assessment of far-distance attack air combat based on mixed dynamic Bayesian networks[C]//Proceedings of the 37th Chinese Control Conference, 2018:4569-4574.
[40] 李高垒, 马耀飞. 基于深度网络的空战态势特征提取[J]. 系统仿真学报, 2017,29(S1):98-105,112. LI G L, MA Y F. Feature extraction algorithm of air combat situation based on deep neural networks[J]. Journal of System Simulation, 2017,29(S1):98-105,112(in Chinese).
[41] 张彬超, 寇雅楠, 邬蒙, 等. 基于深度置信网络的近距空战态势评估[J]. 北京航空航天大学学报, 2017,43(7):1450-1459. ZHANG B C, KOU Y N, WU M, et al. Close-range air combat situation assessment using deep belief network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7):1450-1459(in Chinese).
[42] DAVID S, AJA H, CHRIS J M, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
[43] 郑江安, 郭建奇, 龚旭东. 一对一超视距空战仿真中的机载雷达模型研究[J].系统仿真学报, 2012, 24(3):551-555. ZHENG J A, GUO J Q, GONG X D. Study on model of airborne radar in one wersus one beyond visual range air combat[J]. Journal of System Simulation, 2012, 24(3):551-555(in Chinese).
[44] TENG T H, TAN A H, TEOW L N. Adaptive computer-generated forces for simulator-based training[J]. Expert Systems with Applications, 2013, 40(18):7341-7353.
[45] 周光霞, 周方. 美军人工智能空战系统阿尔法初探[C]//第六届中国指挥控制大会论文集,2018:61-65. ZHOU G X, ZHOU F. Analysis of ALPHA AI for air-to-air combat of US[C]//The 6th China Conference on Command and Control, 2018:61-65(in Chinese).
[46] DAVID S, JULIAN S, KAREN S, et al. Matering the game of go without human knowledge[J]. Nature, 2017, 550(7676):354-359.
[47] VOLODYMYR M,ADRIÀ P B,MEHDI M, et al. Asynchronous methods for deep reinforcement learning[C]//Proceedings of the 33 rd International Conference on Machine Learning, 2016:1928-1937.
[48] ADAMSKI I, ADAMSKI R, GREL T, et al. Distributed deep reinforcement learning:Learn how to play atari games in 21 minutes[C]//Proceedings of International Conference on High Performance Computing, 2018:370-388.