材料工程与机械制造

磁悬浮斜翼节静动态特性

  • 孟彬 ,
  • 王登 ,
  • 徐豪 ,
  • 刘备
展开
  • 浙江工业大学 机械工程学院, 杭州 310023

收稿日期: 2019-08-09

  修回日期: 2019-08-30

  网络出版日期: 2019-11-07

基金资助

国家自然科学基金(51975524)

Static and dynamic characteristics of magnetic suspension coupling

  • MENG Bin ,
  • WANG Deng ,
  • XU Hao ,
  • LIU Bei
Expand
  • College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Received date: 2019-08-09

  Revised date: 2019-08-30

  Online published: 2019-11-07

Supported by

National Natural Science Foundation of China (51975524)

摘要

作为直动式电-机械转换器和二维阀本体之间的连接桥梁,反馈放大机构起着位置反馈、运动转换和推力放大的重要作用。但现有二维伺服比例阀的机械式反馈放大机构都存在摩擦磨损等非线性环节,对阀的静态特性影响明显。基于永磁悬浮技术提出一种新型的无接触式磁悬浮斜翼节,其依靠磁斥力将斜翼动子和阀芯悬浮在中位,同时实现位置反馈和运动转换功能,以彻底去除传统机械式反馈放大机构由于接触带来的摩擦磨损等因素对阀控制特性的不利影响。首先基于电磁场理论建立了磁悬浮斜翼节的数学解析模型,讨论了关键结构参数对磁力矩的影响;随后在Maxwell和Adams平台上分别对其静动态特性进行了基于有限元模拟和多体运动学分析的参数优化,在此基础上制作了实验样机,搭建实验台架研究了斜翼节的静动态特性,从而验证了其工程实用性。仿真和实验结果基本相符,3种验证的斜翼节样机中,当外接比例电磁铁推动外动子移动3 mm时,最大磁力矩可达到0.252 N·m,阶跃响应时间约120 ms。参数化设计表明减小工作气隙和增加斜翼节倾角均能提升斜翼节的磁力矩和动态响应,而在气隙中添加磁流体可提升磁力矩,但同时影响阶跃响应。研究工作对于后续磁悬浮斜翼节在二维伺服比例阀上的实际应用具有重要的参考价值。

本文引用格式

孟彬 , 王登 , 徐豪 , 刘备 . 磁悬浮斜翼节静动态特性[J]. 航空学报, 2020 , 41(5) : 423358 -423358 . DOI: 10.7527/S1000-6893.2019.23358

Abstract

As a bridge between the direct electric-mechanical converter and the two-dimensional valve body, the feedback amplification mechanism plays an important role in position feedback, motion conversion, and thrust amplification. However, the existing mechanical feedback amplification mechanism of two-dimensional servo proportional valve has some non-linear links such as friction and wear, which have a significant impact on the static characteristics of the valve. Based on the permanent magnet suspension technology, a new type of contactless magnetic suspension coupling is proposed in this paper. It suspends the oblique wing rotor and valve core in the middle by magnetic repulsion force, and realizes position feedback and motion conversion function, eliminating the friction and wear caused by contact of traditional mechanical feedback amplifier mechanism. Firstly, based on the electromagnetic field theory, the mathematical analytical model of magnetic suspension coupling is established, and the influence of key structural parameters on magnetic moment is discussed. Then, the static and dynamic characteristics of magnetic suspension coupling are optimized based on the finite element numerical simulation and multi-body kinematics analysis on Maxwell and Adams platforms. On this basis, sample experimental flights are made. The static and dynamic characteristics of the coupling are studied by setting up an experimental bench, which verifies its engineering practicability. The results of simulation and experiment are basically in agreement. In the three validated prototypes, when the external proportional electromagnet drives the external mover to move 3 mm, the maximum magnetic moment can reach 0.252 N·m, and the step response time is about 120 ms. Parametric design shows that reducing the working air gap and increasing the inclination angle of the coupling can improve the magnetic moment and dynamic response of the coupling, while adding magnetic fluid in the air gap can improve the magnetic moment, but at the same time affect the step response. The research has important reference value for the follow-up application of magnetic suspension coupling in two-dimensional servo proportional valve.

参考文献

[1] 王庆丰, 魏建华, 吴根茂, 等. 工程机械液压控制技术的研究进展与展望[J]. 机械工程学报, 2003, 39(12):51-56. WANG Q F, WEI J H, WU G M, et al. Progress and prospects in the research of hydraulic control for construction machinery[J]. Journal of Mechanical Engineering, 2003, 39(12):51-56(in Chinese).
[2] 满在朋, 丁凡, 刘硕, 等. 大流量电液控制阀设计与试验[J]. 农业机械学报, 2015, 46(1):345-351. MAN Z P, DING F, LIU S, et al. Design and experiment on large-flow-rate electro-hydraulic control valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1):345-351(in Chinese).
[3] 严恺. 2D电液比例换向阀及其数字控制器的研究[D]. 杭州:浙江工业大学, 2013:1-10. YAN K. Research of 2D electro-hydraulic proportional direction valve and its digital controller[D]. Hangzhou:Zhejiang University of Technology, 2013:1-10(in Chinese).
[4] 雷天觉. 新编液压工程手册[M]. 北京:北京理工大学出版社, 1998:1202-1330. LEI T J. Hydraulic engineering manual[M]. Beijing:Beijing Institute of Technology Press, 1998:1202-1330(in Chinese).
[5] 成大先. 机械设计手册单行本:液压控制[M]. 5版. 北京:化学工业出版社, 2010:54-104. CHENG D X. Handbook of mechanical design[M]. 5th Ed. Beijing:Chemical Industry Press, 2010:54-104(in Chinese).
[6] 李胜, 阮健, 孟彬. 二维电液比例换向阀动态特性及稳定性分析[J]. 机械工程学报, 2016, 52(2):202-212. LI S, RUAN J, MENG B. Two-dimensional electro-hydraulic proportional directional valve[J]. Journal of Mechanical Engineering, 2016, 52(2):202-212(in Chinese).
[7] 郭永昌. 大流量快响应安全阀设计理论与动态试验方法[D]. 太原:太原理工大学, 2019:1-4. GUO Y C. Design theory and dynamic test method for large flow fast response safety valve[D]. Taiyuan:Taiyuan University of Technology, 2019:1-4(in Chinese).
[8] 李永安. 一种矿用高压大流量水介质液控开关阀的开发[J]. 机床与液压, 2018, 46(16):80-82. LI Y A. Development of a hydraulic control high pressure and large flow water medium on/off valve[J]. Machine Tool & Hydraulics, 2018, 46(16):80-82(in Chinese).
[9] LEE S. Shear control of elastomer shear pads for variable remote center compliance[J]. Advanced Robotics, 2009, 23(1-2):227-237.
[10] 杨华勇, 王双, 张斌, 等. 数字液压阀及其阀控系统发展和展望[J]. 吉林大学学报(工学版), 2016, 46(5):1494-1505. YANG H Y, WANG S, ZHANG B, et al. Development and prospect of digital hydraulic valve and valve control system[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(5):1494-1505(in Chinese).
[11] RUAN J, UKRAINFETZ P R, BURTON R. Frequency domain modelling and identification of 2D digital servo valve[J]. International Journal of Fluid Power, 2000, 1(2):49-59.
[12] RUAN J, UKRAINFETZ P, BURTON R. An investigation into the characteristics of a two dimensional, 2D, flow control valve[J]. Journal of Dynamic Systems Measurement and Control, 2002, 124(1):214-220.
[13] ZHAO W, RUAN J. Experimental study of the dynamic properties of 2D servo valve with different pilot structure[J]. Applied Mechanics and Materials, 2014, 687-691:326-330.
[14] 阮健, 裴翔, 李胜. 2D电液数字换向阀[J]. 机械工程学报, 2000, 36(3):86-89. RUAN J, PEI X, LI S. 2D digital directional control valve[J]. Journal of Mechanical Engineering, 2000, 36(3):86-89(in Chinese).
[15] 阮健, 李胜, 裴翔, 等. 数字阀的分级控制及非线性[J]. 机械工程学报, 2005, 41(11):91-97. RUAN J, LI S, PEI X, et al. Stage control and nonlinearites of digital valves[J]. Journal of Mechanical Engineering, 2005, 41(11):91-97(in Chinese).
[16] RUAN J. Pre-tensioning pre-twisting full-bridge 2D electro-hydraulic proportional directional valve:US. 9970464B1[P]. 2018-05-15.
[17] 励伟. 大流量2D电液比例换向阀的设计及研究[D]. 杭州:浙江工业大学, 2013:61-67. LI W. Design and study of large flow 2D eletro-hydraulic proportional directional valves[D]. Hangzhou:Zhejiang University of Technology, 2013:61-67(in Chinese).
[18] 左强. 半桥导控型2D电液比例换向阀的原理、理论分析及实验研究[D]. 杭州:浙江工业大学, 2014:16-20. ZUO Q. Principle, theoretical analysis and experimental study on half-bridge pilot 2D electro-hydraulic proportional directional valve[D]. Hangzhou:Zhejiang University of Technology, 2014:16-20(in Chinese).
[19] 刘国文. 位移可放大型二维(2D)电液比例换向阀研究[D]. 杭州:浙江工业大学, 2015:39-42. LIU G W. Research of two dimensional (2D) electro-hydraulic proportional directional valve with displacement enlarging[D]. Hangzhou:Zhejiang University of Technology, 2014:39-42(in Chinese).
[20] 张宪, 裴翔, 吕梅蕾, 等. 2D数字阀阀芯受力分析及研究[J]. 流体传动与控制, 2011(6):16-18. ZHANG X, PEI X, LV M L, et al. Research and analysis of forces on 2D digital valve spool[J]. Fluid Power Transmission and Control, 2011(6):16-18(in Chinese).
[21] 唐辉. 被动磁悬浮轴承及电涡流传感器研究[D]. 西安:西安交通大学, 2003:8-20. TANG H. Researches into passive magnetic bearings and eddy current sensors[D]. Xi'an:Xi'an Jiaotong University, 2003:8-20(in Chinese).
[22] 田录林, 杨晓萍, 李言, 等. 适用于永磁悬浮轨道及永磁轴承的解析磁力模型研究[J]. 摩擦学学报, 2008,28(1):73-77. TIAN L L, YANG X P, LI Y, et al. Analytical magnetic force model for permanent magnetic guide way and permanent magnetic bearings[J]. TRIBOLOGY, 2008,28(1):73-77(in Chinese).
[23] 田录林, 张靠社, 王德意, 等. 永磁导轨悬浮和导向磁力研究[J]. 中国电机工程学报, 2008,28(21):135-139. TIAN L L, ZHANG K S, WANG D Y, et al. Research on the levitation and guidance magnetic force of permanent magnetic guideway[J]. Proceedings of the CSEE, 2008,28(21):135-139(in Chinese).
[24] YONNET J P. Permanent magnet bearings and coupli-ngs[J]. IEEE Transactions on Magnetics, 1981, 17(1):1169-1173.
[25] VICTOR F, JAIME F, CHRISTOPHE S, et al. A design methodology for permanent magnet microbearings[J]. IEEE Transactions on Magnetics, 2000, 36(4):1919-1922.
[26] 田录林. 永磁轴承和导轨磁力解析模型的研究[D]. 西安:西安理工大学, 2008:102-104. TIAN L L. Research on the Analytical magnetic force model of permanent magnet bearings and permanent magnet guideway[D]. Xi'an:Xi'an University of Technology, 2008:102-104(in Chinese).
[27] 田录林. 永磁悬浮轴承与轨道及其磁力解析模型[M]. 北京:科学出版社, 2018:92-103. TIAN L L. Permanent magnet suspension bearing and track and permanent magnetic analytical model[M]. Beijing:Science Press, 2018:92-103(in Chinese).
[28] 李松晶, 李晓东, 宋彦伟, 等. 采用磁流体的伺服阀力矩马达静态试验研究[J]. 机床与液压, 2007,35(7):66-67,79. LI S J, LI X D, SONG Y W, et al. Experiment of hydraulic servo valve torque motor static characteristic with magnetic fluid[J]. Machine Tool & Hydraulics, 2007,35(7):66-67,79(in Chinese).
[29] 盛晓伟. 添加磁流体的射流管伺服阀动态特性研究[D]. 哈尔滨:哈尔滨工业大学, 2006:19-22. SHENG X W. Dynamic characteristic research of jet pipe servo valve with magnetic fluid[D]. Harbin:Harbin Institute of Technology, 2006:19-22(in Chinese).
[30] 彭敬辉. 伺服阀衔铁组件的自激振动特性及磁流体的抑振研究[D]. 哈尔滨:哈尔滨工业大学, 2016:105-107. PENG J H. Study on self-excited vibration characteristics of armature assembly in a hydraulic servo valve and vibration suppression using magnetic fluid[D]. Harbin:Harbin Institute of Technology, 2016:105-107(in Chinese).
文章导航

/