流体力学与飞行力学

面向先进战斗机研制的风洞模型飞行试验技术

  • 岑飞 ,
  • 聂博文 ,
  • 刘志涛 ,
  • 郭林亮 ,
  • 孙海生 ,
  • 李清
展开
  • 1. 清华大学 自动化系, 北京 100084;
    2. 中国空气动力研究与发展中心 低速空气动力研究所, 绵阳 621000;
    3. 国防科技大学 智能科学学院, 长沙 410073

收稿日期: 2019-09-03

  修回日期: 2019-10-21

  网络出版日期: 2019-10-31

基金资助

国家自然科学基金(61771281);新一代人工智能重大项目(2018AAA0101605);2018年工业化和信息化部工业转型升级专项(ZB1825005);清华大学自主科研计划(2018Z05JZY015)

Wind tunnel model flight test technique for advanced fighter aircraft design

  • CEN Fei ,
  • NIE Bowen ,
  • LIU Zhitao ,
  • GUO Linliang ,
  • SUN Haisheng ,
  • LI Qing
Expand
  • 1. Department of Automation, Tsinghua University, Beijing 100084, China;
    2. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China

Received date: 2019-09-03

  Revised date: 2019-10-21

  Online published: 2019-10-31

Supported by

National Natural Science Foundation of China(61771281); New Generation Artificial Intelligence Major Project of China(2018AAA0101605); 2018 Industrial Internet Innovation and Development Project(ZB1825005); Tsinghua University Initiative Scientific Research Program(2018Z05JZY015)

摘要

高机动性先进战斗机气动布局与飞控系统设计面临愈加严峻的流动/运动/控制耦合问题,大迎角飞行以及推力矢量等高新技术应用也使其在研制过程中面临更高的技术风险,风洞模型飞行试验是实现飞行器气动/飞行/控制一体化研究、降低研制技术风险的重要手段。介绍了低速风洞模型飞行试验技术原理及国内外发展现状,对试验技术主要特点及其在支撑先进战斗机研制中的作用、应用范围、应用阶段以及面临的主要挑战进行了分析,为试验技术发展和应用提供参考。发展和应用低速风洞模型飞行试验技术,有利于充分挖掘战斗机的气动性能与控制性能,降低试飞风险,是新一代战斗机研制、新技术工程化应用的重要支撑技术。

本文引用格式

岑飞 , 聂博文 , 刘志涛 , 郭林亮 , 孙海生 , 李清 . 面向先进战斗机研制的风洞模型飞行试验技术[J]. 航空学报, 2020 , 41(6) : 523444 -523444 . DOI: 10.7527/S1000-6893.2019.23444

Abstract

The design of aerodynamic configuration and control system for high maneuverability fighter aircraft has encountered severe problems regarding to flow/motion/control coupling. Furthermore, application of radical technologies makes it face higher technical risks during the development process. Wind tunnel model flight test is a significant approach to studying the aerodynamics/dynamics/control characteristic of aircraft and to reducing the technical risks. The principle of low speed wind tunnel model flight test technology and its state-of-the-arts are introduced. The main characteristics of the test and its role in supporting the development of advanced fighter aircraft, application stage, and main challenges are analyzed, providing guidelines for the development and application of the test technique. The development and application of low-speed wind tunnel model flight test technology is a promising way to understand and optimize the aerodynamic characteristics and control performance of fight aircraft. It has become an important supporting technology for developing new generation fighters, reducing risks for flight test of full-scale aircraft, and accelerating the process of new technologies applying to industry.

参考文献

[1] 孙海生,姜裕标,黄勇,等.现代战斗机非定常空气动力学及其风洞实验研究[J]. 空气动力学学报, 2008, 26(增刊):59-64. SUN H S, JIANG Y B, HUANG Y, et al. Unsteady aerodynamics of modern fighter plane and experiment research in W.T.[J]. Acta Aerodynamica Sinica, 2008, 26(S):59-64(in Chinese).
[2] 周自全. 现代战斗机的飞行试验[J]. 北京航空航天大学学报, 2003, 29(12):1110-1114. ZHOU Z Q. Flight test of modern fighter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12):1110-1114(in Chinese).
[3] 卿理勋. 几种动态模型自由飞试验技术[J]. 飞行力学, 1995, 13(3):18-23. QING L X. Dynamic model free-flight test techniques[J]. Flight Dynamics, 1995, 13(3):18-23(in Chinese).
[4] 孙海生, 岑飞, 聂博文, 等. 水平风洞模型自由飞试验技术研究现状及展望[J]. 实验流体力学, 2011, 25(4):103-108. SUN H S, CEN F, NIE B W, et al. Present research status and prospective application of wind tunnel free-flight test technique[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):103-108(in Chinese).
[5] GUO L L, ZHU M H, NIE B W, et al. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system[J]. Chinese Journal of Aeronautics, 2017, 30(2):602-610.
[6] 岑飞, 聂博文, 刘志涛,等. 低速风洞带动力模型自由飞试验[J]. 航空学报, 2017, 38(10):121214. CEN F, NIE B W, LIU Z T, et al. Low speed wind tunnel free-flight test of powered sub-scale aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121214(in Chinese).
[7] 耿玺, 史志伟. 面向过失速机动的风洞动态试验相似准则探讨[J]. 实验流体力学, 2011,25(3):41-45. GENG X, SHI Z W. Similarity criterion of the wind tunnel test for the post-stall maneuver[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):41-45(in Chinese).
[8] 陈孟钢, 高金源. 缩比模型飞机及其飞控系统与原型机的相似关系[J]. 飞行力学, 2003, 21(2):34-37. CHEN M G, GAO J Y. Similarity relationships between scaled-model aircraft with its flight control system and prototype aircraft[J]. Flight Dynamics, 2003, 21(2):34-37(in Chinese).
[9] 刘志涛, 岑飞, 聂博文, 等. 低速风洞模型自由飞试验飞行控制系统相似准则及模拟方法研究[J]. 空气动力学学报[J]. 2017, 35(5):693-699. LIU Z T, CEN F, NIE B W, et al. Similarity criteria and simulation method for flight control system of free-flight test in low speed wind tunnel[J]. Acta Aerodynamica Sinica, 2017, 35(5):693-699(in Chinese)
[10] PATTINSON J. Development and evaluation of a wind tunnel manoeuvre rig[D]. Bristol:University of Bristol, 2010.
[11] PATTINSON J, LOWENBERG M, GOMAN M. Multi-degree-of-freedom wind-tunnel maneuver rig for dynamic simulation and aerodynamic model identification[J]. Journal of Aircraft, 2013, 50(2):551-565.
[12] GONG Z, ARAUJO-ESTRADA S, LOWENBERG M, et al. Experimental investigation of aerodynamic hysteresis using a five-degree-of-freedom wind-tunnel maneuver rig[J]. Journal of Aircraft, 2019, 56(1):1029-1040.
[13] LOWENBERG M, PATTINSON J, GOMAN M G. Investigation of post-stall pitch oscillations of an aircraft wind-tunnel model[J]. Journal of Aircraft, 2013, 50(6):1843-1855.
[14] ARAUJO-ESTRADA S, LOWENBERG M, NEILD S, et al. Evaluation of aircraft model upset behaviour using wind tunnel manoeuvre rig[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2015.
[15] GRISHIN I, KHRABROV A, KOLINKO A, et al. Wind tunnel investigation of critical flight regimes using dynamically scaled actively controlled model in 3-DOF gimbal[C]//ICAS 2014, 2014.
[16] IGNATYEV D I. Neural network adaptive control of wing-rock motion of aircraft model mounted on three-degree-of-freedom dynamic rig in wind tunnel[C]//European Conference for Aeronautics & Space Sciences, 2015.
[17] IGNATYEV D I, SIDORYUK M E, KOLINKO K A, et al. Wind tunnel three-degree-of-freedom dynamic rig for control validation[C]//ICAS 2016, 2016.
[18] IGNATYEV D I, SIDORYUK M E, KOLINKO K A, et al. Dynamic rig for validation of control algorithms at high angles of attack[J]. Journal of Aircraft, 2017, 54(5):1760-1771.
[19] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3):624-633.
[20] STRUB G, THEODOULISY S, GASSMAN V, et al. Pitch axis control for a guided projectile in a wind tunnel-based hardware-in-the-loop setup:AIAA-2015-0153[R]. Reston:AIAA, 2015.
[21] STENFELT G, RINGGERTZ U. Yaw control of a tailless air-craft configuration[J]. Journal of Aircraft, 2010, 47(5):1807-1810.
[22] ChAMBERS J R. Modeling flight:the role of dynamically scaled free-flight models in support of NASA's aerospace programs[M]. South Carolina:Create space Independent Pub, 2013:94-102.
[23] SMITH C C. Flight tests of a 1/6-scale model of the Hawker P.1127 Jet VTOL airplane:NASA TM SX-531[R]. Washington, D.C.:NASA, 1961.
[24] BOISSEAU P C. Flight investigation of dynamic stability and control characteristics of a 1/10-scale model of a variable-wing-sweep fighter airplane configuration:NASA TM X-1367[R]. Washington, D.C.:NASA, 1967.
[25] CHAMBERS J R, BURLEY J R. High-angle-of-attack technology-Accomplishments, lessons learned, and future directions:NASA/CP-1998-207676[R]. Washington, D.C.:NASA, 1998.
[26] GRAFTON S B, CHAMBERS J R. Wind-tunnel free-flight investigation of a model of a spin-resistant fighter configuration:NASA TN D-7716[R]. Washington, D.C.:NASA,1974.
[27] MURRI D G, NGUYEN L T, GRAFTON S B. Wind-tunnel free-flight investigation of a model of a forward-swept-wing fighter configuration:NASA TP-2230[R]. Washington, D.C.:NASA, 1984.
[28] MULLIN S N. The evolution of the F-22 advanced tactical fighter:AIAA-1992-4188[R]. Reston:AIAA,1992.
[29] 郭林亮, 祝明红, 孔鹏, 等. 风洞虚拟飞行模型机与原型机动力学特性分析[J]. 航空学报, 2016, 37(8):2583-2593. GUO L L, ZHU M H, KONG P, et a1. Analysis of dynamical characteristics between prototype aircraft and scaled model of virtual flight test in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2583-2593(in Chinese).
[30] 郭林亮, 祝明红, 傅澔, 等. 一种低速风洞虚拟飞行试验装置的建模与仿真[J]. 空气动力学学报, 2017, 35(5):708-717. GUO L L, ZHU M H, FU H, et al. Modeling and simulation for a low speed wind tunnel virtual flight test rig[J]. Acta Aerodynamica Sinica, 2017,35(5):708-717(in Chinese).
[31] 刘志涛, 聂博文, 郭林亮, 等. 风洞虚拟飞行试验中的飞行控制系统快速原型设计与部署技术[J]. 空气动力学学报, 2017, 35(5):700-707. LIU Z T, NIE B W, GUO L L, et al. Rapid prototyping and implementation of flight control system for wind tunnel virtual flight test[J]. Acta Aerodynamica Sinica, 2017, 35(5):700-707(in Chinese)
[32] GUO L L, ZHU M H, NIE B W, et al. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system[J]. Chinese Journal of Aeronautics, 2017, 30(2):602-610.
[33] 郭林亮, 祝明红, 傅澔, 等. 水平风洞中开展飞机尾旋特性研究的理论分析[J]. 航空学报, 2018, 39(6):122030. GUO L L, ZHU M H, FU H, et al. Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):122030(in Chinese)
[34] 岑飞. 水平风洞模型自由飞中的飞行控制系统关键技术研究[D]. 绵阳:中国空气动力研究与发展中心, 2011. CEN F. Design of flight control system for wind tunnel free-flight test[D]. Mianyang:China Aerodynamics Research and Development Center, 2011(in Chinese).
[35] CEN F, LI Q, FAN L, et al. Development of a pilot-in-loop real-time simulation platform for wind tunnel free-flight test[C]//2015 IEEE International Conference on Information and Automation (ICIA). Piscataway:IEEE Press, 2015.
[36] 胡静, 李潜. 风洞虚拟飞行试验技术初步研究[J]. 实验流体力学, 2010, 24(1):95-99. HU J, LI Q. Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fliud Mechanics, 2010, 24(1):95-99(in Chinese).
[37] 朱正龙,郭林亮,祝明红,等. 结冰条件下大型民机操稳特性研究与风洞虚拟飞行验证[C]//2019中国力学大会论文集, 2019. ZHU Z L, GUO L L, ZHU M H, et al. Study on stability and controllability of largr civil aircraft under icing conditions and verification via virtual flight in wind tunnel[C]//Proceedings of Chinese Congress of Theoretical Applied Mechanics,2019(in Chinese).
[38] 聂博文,杨洪森,刘志涛, 等. 倾转四旋翼无人机飞行控制系统集成与风洞虚拟飞行试验应用[C]//中国空气动力学会测控专业委员会第七届四次全国学术交流会论文集, 2019:162-167. NIE B W, YANG H S, LIU Z T, et al. Flight control system integration and wind tunnel virtual flight test of a quad-rotor aircraft[C]//Proceeding of 2019 Committee Meeting of Measurement and Control of Chinese Aerodynamics Research Society, 2019:162-167(in Chinese).
[39] 郭天豪. 飞翼布局飞机虚拟飞行试验报告[R]. 绵阳:中国空气动力研究与发展中心,2019. GUO T H. Report of wind tunnel virtual flight for a Flying Wing[R]. Mianyang:China Aerodynamics Research and Development Center, 2019(in Chinese).
[40] 范利涛,任忠才,聂博文,等. 基于运动捕获的非接触测量系统在风洞模型自由飞位姿测量中的应用[C]//中国空气动力学会测控专业委员会第七届四次全国学术交流会论文集,2019:630-635. FAN L T, REN Z C, NIE B W, et al. Model position measurement in wind tunnel free-flight test base on non-contact technology[C]//Proceeding of 2019 Committee Meeting of Measurement and Control of Chinese Aerodynamics Research Society, 2019:630-635(in Chinese).
文章导航

/