流体力学与飞行力学

先进战斗机过失速机动大气数据融合估计方法

  • 杨朝旭 ,
  • 郭毅 ,
  • 雷廷万 ,
  • 李荣冰
展开
  • 1. 中国航空工业成都飞机设计研究所, 成都 610091;
    2. 南京航空航天大学 自动化学院, 南京 210016

收稿日期: 2019-09-10

  修回日期: 2019-09-21

  网络出版日期: 2019-10-24

Air data fusion and estimation method for advanced aircrafts in post-stall maneuver

  • YANG Zhaoxu ,
  • GUO Yi ,
  • LEI Tingwan ,
  • LI Rongbing
Expand
  • 1. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China;
    2. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2019-09-10

  Revised date: 2019-09-21

  Online published: 2019-10-24

摘要

可控的过失速机动是先进战斗机超机动性能的重要标志,飞机飞行包线的扩大已超出传统的大气数据系统测量范围,可靠的迎角、侧滑角、总压、静压等飞行大气数据是制约先进战斗机过失速机动中飞行控制的关键因素。以中国推力矢量验证机为对象,基于过失速机动飞行试验的数据,开展大气参数估计与验证研究。结合过失速机动的时间与空间特性,研究了基于风速、地速、空速矢量和惯性姿态、导航参数的大气参数融合计算方法;针对过失速大迎角状态下飞机周围气流非定常、模型非线性导致的融合大气参数误差的复杂特性,进一步构建深度神经网络,对机动状态融合迎角、侧滑角的强非线性误差进行拟合。仿真和飞行试验表明:该方法可在大迎角飞行状态下实现主要大气参数的融合估计,过失速机动过程中融合迎角误差优于2.3°,融合得到的大气参数可为过失速大迎角机动飞行控制提供可靠的大气参数状态反馈。

本文引用格式

杨朝旭 , 郭毅 , 雷廷万 , 李荣冰 . 先进战斗机过失速机动大气数据融合估计方法[J]. 航空学报, 2020 , 41(6) : 523456 -523456 . DOI: 10.7527/S1000-6893.2019.23456

Abstract

Post-stall maneuver capability is an important feature of advanced aircrafts, and the extension of flight envelope exceeded the measurement range of traditional air data systems. air data including angle of attack, angle of sideslip, total and static pressure are the essential factors for the control of advanced fighters in post-stall maneuver. An air data fusion and estimation method was proposed and validated based on a thrust vector technology test. The first step is to calculate air data by blending vectors of wind speed, ground speed, and navigation parameters such as attitude and rotation rate. A kind of deep neural network with multiple hidden layers and better feature expression and ability to model complex mapping was designed, trained and employed to fit the calculated angle of attack errors with strong nonlinearity and hysteresis, which were due to the unsteady flow around the aircraft and nonlinear relationship among the flight state parameters. Simulation and flight data shown that the proposed method can complete the estimation of air data even at high angle of attack maneuver and achieve angle of attack parameter with an error no more than 2.3°. The estimated air data can be provided to the flight control system as reliable state feedback.

参考文献

[1] 朱纪洪, 张尚敏, 周池军, 等.飞机超机动状态动力学特征及对控制系统的挑战[J]. 控制理论与应用, 2014, 31(12):1650-1662 ZHU J H, ZHANG S M, ZHOU C J, et al. Dynamic characteristics and challenges for control system of super-maneuverable aircraft[J]. Control Theory & Applications, 2014, 31(12):1650-1662(in Chinese).
[2] 史忠科.高性能飞机发展对控制理论的挑战[J].航空学报, 2015, 36(8):2717-2734. SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2717-2734(in Chinese).
[3] 汪清,钱炜祺,丁娣.飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8):2331-2347. WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircraft at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2331-2347(in Chinese).
[4] HYDE D, BROWN F, SHWEYK K,et al. High angle of attack static and dynamic modeling methods for flight dynamics loss of control research[C]//2018 AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2018.
[5] 张婉鑫, 朱纪洪. 大迎角非定常气动参数辨识研究[J]. 清华大学学报(自然科学版), 2017, 57(7):673-679. ZhANG W X, ZHU J H. Unsteady aerodynamic identification of aircraft at high angle of attack[J]. Journal Tsinghua University (Science and Technology), 2017, 57(7):673-679(in Chinese).
[6] SHI J P, LV Y X, QU X B, et al. A coordinated control method of thrust vector and aerodynamic surfaces based on control allocation technology[C]//2018 18th International Conference on Control, Automation and Systems, 2018.
[7] 汤伟,黄勇,傅澔.推力矢量对飞机大迎角动态气动特性的影响[J].航空学报, 2018, 39(4):121648. TANG W,HUANG Y,FU H. Effect of thrust vector on dynamic aerodynamic characteristics of aircraft at high angle of attack[J]. Acta Aeronautica et Astronatica Sinica, 2018, 39(4):121648(in Chinese).
[8] HARRIS J. F-35 flight control law design, development and verification[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2018.
[9] 陈海, 何开锋, 钱炜褀, 等. 基于扩展L1自适应的战斗机大迎角非线性控制[J]. 控制与决策, 2017, 32(8):1403-1408. CHEN H, HE K F, QIAN W Q, et al. L1 adaptive augmentation for high angle of attack nonlinear control of fighter[J]. Control and Decision, 2017, 32(8):1403-1408(in Chinese).
[10] 叶辉,吴庆宪,陈谋. 非定常条件下大迎角机动控制[J]. 哈尔滨工业大学学报, 2016, 48(4):84-90 YE H, WU Q X, CHEN M. Control of high angle of attack maneuver under unsteady aerodynamic condition[J]. Journal of Harbin Institute of Technology,2016,48(4):84-90(in Chinese).
[11] 陆辰, 李荣冰, 刘建业,等. 气动模型及导航信息辅助的大气参数估计方法[J]. 控制与决策, 2018, 33(3):491-496. LU C, LI R B, LIU J Y, et al. Air data estimation method aided by aerodynamic model and navigation information[J]. Control and Decision, 2018, 33(3):491-496(in Chinese).
[12] NEBULA F, PALUMBO R, MORANI G. Virtual air data:A fault-tolerant approach against ADS failures[C]//AIAA Infotech at Aerospace Conference, Reston:AIAA, 2013:1-14.
[13] LANGELAAN J W, SPLETZER J, MONTELLA C, et al. Wind field estimation for autonomous dynamic soaring[C]//2012 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2012:16-22.
[14] LI R B, LU C, LIU J Y, et al. Air data estimation algorithm under unknown wind based on information fusion[J]. Journal of Aerospace Engineering, 2018, 31(5):04018072.
[15] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年:回顾与展望[J].计算机学报, 2016, 39(8):1697-1716. JIAO L C, YANG S Y, LIU F, et al. Seventy years beyond neural networks:Retrospect and prospect[J]. Chinese Journal of Computer, 2016, 39(8):1697-1716(in Chinese).
[16] 曾毅, 刘成林, 谭铁牛. 类脑只能研究的回顾与展望[J].计算机学报, 2016, 39(1):212-222. ZENG Y, LIU C L, TAN T N. Retrospect and outlook of brain-inspired intelligence research[J]. Chinese Journal of Computer, 2016, 39(1):212-222(in Chinese).
[17] 陈建廷, 向阳. 深度神经网络训练中梯度不稳定线型研究综述[J]. 软件学报, 2018, 29(7):2071-2091. CHEN J T, XIANG Y. Survey of unstable gradients in deep neural network training[J]. Journal of Software, 2018, 29(7):2071-2091(in Chinese).
[18] 高晓光, 李新宇, 岳勐琪, 等. 基于深度学习的地空导弹发射区拟合算法研究[J]. 航空学报, 2019, 40(9):322858. GAO X G, LI X Y, YUE M Q, et al. Fitting algorithm of ground-to-air missile launching area based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):322858(in Chinese).
[19] 朱虎明, 李佩, 焦李成, 等. 深度神经网络并行化研究综述[J]. 计算机学报, 2018, 41(8):1862-1881. ZHU H M, LI P, JIAO L C, et al. Review of parallel deep neural network[J]. Chinese Journal of Computer, 2018, 41(8):1862-1881(in Chinese).
文章导航

/