[1] 刘芳, 王洪娟, 黄光伟, 等. 基于自适应深度网络的无人机目标跟踪算法[J]. 航空学报, 2019, 40(3):322332. LIU F, WANG H J, HUANG W G, et al. UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):179-188 (in Chinese).
[2] 邵干, 张曙光, 唐鹏. 小型无人机气动参数辨识的新型 HGAPSO 算法[J]. 航空学报, 2017, 38(4):49-59. SHAO G, ZHANG S G, TANG P. HGAPSO:A new aerodynamic parameters identification algorithm for small unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):49-59 (in Chinese).
[3] GANTI S R, KIM Y. Implementation of detection and tracking mechanism for small uas[C]//2016 International Conference on Unmanned Aircraft Systems. Piscataway, NJ:IEEE Press, 2016:1254-1260.
[4] STURDIVANT R L, CHONG E K. Systems engineering baseline concept of a multispectral drone detection solution for airports[J]. IEEE Access, 2017, 5:7123-7138.
[5] 赵洲, 黄攀峰, 陈路. 一种融合卡尔曼滤波的改进时空上下文跟踪算法[J]. 航空学报, 2017, 38(2):269-279. ZHAO Z, HUANG P F, CHEN L. A tracking algorithm of improved spatio-temporal context with Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):269-279 (in Chinese).
[6] 王晓. 视频中无人机的实时检测与跟踪算法研究[D]. 哈尔滨:哈尔滨工程大学, 2019. WANG X. Research on real-time detection and tracking algorithm of UAV in video[D]. Harbin:Harbin Engineering University, 2019 (in Chinese).
[7] 郭晓冉, 崔少辉, 毛向东, 等. 背景干扰下的捷联图像导引系统目标跟踪方法[J]. 兵器装备工程学报, 2017, 38(3):1-5. GUO X R, CUI S H, MAO X D, et al. Strapdown image homing system target tracking approach under the interference of background[J]. Journal of Ordnance Equipment Engineering, 2017, 38(3):1-5 (in Chinese).
[8] 吕梅柏, 赵小锋, 刘广哲. 空中大机动目标跟踪算法研究[J]. 现代防御技术, 2018, 46(2):45-50. LV M B, ZHAO X F, LIU G Z. Aerial high maneuvering target tracking algorithm[J]. Modern Defence Technology, 2018, 46(2):45-50 (in Chinese).
[9] WU Y, LIM J, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1834-1848.
[10] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
[11] ZHANG J, MA S, SCLAROFF S. MEEM:Robust tracking via multiple experts using entropy minimization[C]//2014 European Conference on Computer Vision, 2014:188-203.
[12] DANELLJAN M, HÄGER G, KHAN F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8):1561-1575.
[13] 孙丰东. 图像显著性检测若干关键问题研究[D]. 长春:吉林大学, 2019. SUN F D. Research on several key issues of image saliency detection[D]. Changchun:Jilin University, 2019 (in Chinese).
[14] STRAND R, CIESIELSKI K C, MALMBERG F, et al. The minimum barrier distance[J]. Computer Vision and Image Understanding, 2013, 117(4):429-437.
[15] ZHANG J, SCLAROFF S, LIN Z, et al. Minimum barrier salient object detection at 80 fps[C]//2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 2015:1404-1412.
[16] LIU C, YUEN P C, QIU G. Object motion detection using information theoretic spatio-temporal saliency[J]. Pattern Recognition, 2009, 42(11):2897-2906.
[17] YANG M, YUAN J, WU Y. Spatial selection for attentional visual tracking[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2007:1-8.
[18] FAN J, WU Y, DAI S. Discriminative spatial attention for robust tracking[C]//2010 European Conference on Computer Vision, 2010:480-493.
[19] HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]//2015 International Conference on Machine Learning. Lille:The International Machine Learning Society, 2015:597-606.
[20] CHOI J, JIN CHANG H, JEONG J, et al. Visual tracking using attention-modulated disintegration and integration[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2016:4321-4330.
[21] WEI Y, WEN F, ZHU W, et al. Geodesic saliency using background priors[C]//2012 European Conference on Computer Vision, 2012:29-42.
[22] POSSEGGER H, MAUTHNER T, BISCHOF H. In defense of color-based model-free tracking[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2015:2113-2120.
[23] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple:Complementary learners for real-time tracking[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2016:1401-1409.
[24] HARE S, GOLODETZ S, SAFFARI A, et al. Struck:Structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10):2096-2109.
[25] NING J, YANG J, JIANG S, et al. Object tracking via dual linear structured svm and explicit feature map[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2016:4266-4274.
[26] FAN H, LIN L, YANG F, et al. Lasot:A high-quality benchmark for large-scale single object tracking[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2019:5374-5383.
[27] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//2012 European Conference on Computer Vision, 2012:702-715.
[28] LI Y, ZHU J. A scale adaptive kernel correlation filter tracker with feature integration[C]//2014 European Conference on Computer Vision Workshops, 2014:254-265.
[29] DANELLJAN M, HAGER G, SHAHBAZ KHAN F, et al. Learning spatially regularized correlation filters for visual tracking[C]//2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 2015:4310-4318.
[30] MUELLER M, SMITH N, GHANEM B. Context-aware correlation filter tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2017:1396-1404.
[31] LUKEZIC A, VOJIR T, ?EHOVIN ZAJC L, et al. Discriminative correlation filter with channel and spatial reliability[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2017:6309-6318.
[32] DANELLJAN M, BHAT G, SHAHBAZ KHAN F, et al. ECO:Efficient convolution operators for tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2017:6638-6646.
[33] WANG N, ZHOU W, TIAN Q, et al. Multi-cue correlation filters for robust visual tracking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2018:4844-4853.
[34] VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2017:2805-2813.
[35] SONG Y, MA C, WU X, et al. Vital:Visual tracking via adversarial learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2018:8990-8999.
[36] CHOI J, JIN C H, FISCHER T, et al. Context-aware deep feature compression for high-speed visual tracking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2018:479-488.
[37] DAI K, WANG D, LU H, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2019:4670-4679.
[38] CHOI J, JIN C H, YUN S, et al. Attentional correlation filter network for adaptive visual tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2017:4807-4816.
[39] WANG M, LIU Y, HUANG Z. Large margin object tracking with circulant feature maps[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2017:4021-4029.