固体力学与飞行器总体设计

基于声学黑洞的盒式结构全频带振动控制

  • 何璞 ,
  • 王小东 ,
  • 季宏丽 ,
  • 裘进浩 ,
  • 成利
展开
  • 1. 南京航空航天大学 机械结构力学及控制国家重点实验室, 南京 210016;
    2. 香港理工大学 机械工程系, 香港 999077

收稿日期: 2019-08-08

  修回日期: 2019-10-12

  网络出版日期: 2019-10-10

基金资助

国家自然科学基金(11532006,51775267);江苏省自然科学基金(BK20181286);中央高校基本科研业务专项资金(NE2015001);装备预研基金(61402100103);江苏高校优势学科建设工程资助项目

Full-band vibration control of box-type structure with acoustic black hole

  • HE Pu ,
  • WANG Xiaodong ,
  • JI Hongli ,
  • QIU Jinhao ,
  • CHENG Li
Expand
  • 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China

Received date: 2019-08-08

  Revised date: 2019-10-12

  Online published: 2019-10-10

Supported by

National Natural Science Foundation of China (11532006, 51775267); Natural Science Foundation of Jiangsu Province (BK20181286); Fundamental Research Funds for the Central Universities (NE2015001); Equipment Pre-Research Foundation (61402100103); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

声学黑洞(ABH)作为一种新型高效的波动控制技术,被广泛应用于梁板结构的振动控制中。传统声学黑洞结构存在局部强度和刚度较弱、特征尺寸较大、有效作用频率较高等问题,限制了声学黑洞技术的进一步应用和推广。针对盒式结构振动控制问题,设计了一种新型的声学黑洞阻尼(ABHD)振子。运用有限元仿真方法研究了附加ABHD振子的盒式结构的动态特性,结果表明附加声学黑洞阻尼振子的盒式结构具有高效的能量聚集和耗散能力。通过对盒式结构上下主梁中间不同位置处振子参数的优化,在不改变原有主结构强度和刚度的前提下,实现了对主梁全频带的减振效果。实验结果表明,传统盒式结构在附加多个ABHD振子后全频带的共振峰均有5~30 dB的削减,且附加振子的质量占系统总质量的7.8 %。

本文引用格式

何璞 , 王小东 , 季宏丽 , 裘进浩 , 成利 . 基于声学黑洞的盒式结构全频带振动控制[J]. 航空学报, 2020 , 41(4) : 223350 -223350 . DOI: 10.7527/S1000-6893.2019.23350

Abstract

As a new type of efficient wave control technology, the Acoustic Black Hole (ABH) technology is widely used in vibration control of beam and plate structures. However, the traditional acoustic black hole structures have many shortcomings, such as weak local strength and stiffness, large feature size, and high effective frequency, limiting the further application and promotion of acoustical black hole technology. A new type of Acoustic Black Hole Damping (ABHD) absorber is designed for the vibration control of box-type structure. In this paper, the finite element simulation method is used to study the dynamic characteristics of the box-type structure with ABHD absorber. The results show that it has high energy concentration and dissipation ability. By optimizing the design of ABHD absorber at different positions in the middle of upper and lower main beams, the vibration reduction effect of the full-band can be achieved without changing the strength and stiffness of the main structure. The experimental results show that full-band resonance peaks of the box-type structure with ABHD absorbers can be reduced by 5-30 dB, and the weight of ABHD absorbers accounts for 7.87% of the total weight of system.

参考文献

[1] 黄文虎,王心清,张景绘,等.航天柔性结构振动控制的若干新进展[J].力学进展, 1997, 27(1):5-18. HUANG W H, WANG X Q, ZHANG J H, et al. Some advances in the vibration control of aerospace flexible structures[J]. Advances in Mechanics, 1997, 27(1):5-18(in Chinese).
[2] 陈勇,熊克,王鑫伟,等.飞行器智能结构系统研究进展与关键问题[J].航空学报, 2004, 25(1):21-25. CHEN Y, XIONG K, WANG X W. Progress and challenges in aeronautical smart structure systems[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(1):21-25.(in Chinese).
[3] 刘东岳,万志强,杨超,等.大展弦比机翼总体刚度的气动弹性优化设计[J].航空学报, 2011, 32(6):1025-1031. LIU D Y, WAN Z Q, YANG C, et al. Aeroelastic optimization design of global stiffness for high aspect ratio wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1025-1031(in Chinese).
[4] 高恒烜,王莹,李书,等.压电复合材料机翼振动控制研究[J].振动、测试与诊断, 2013, 33(S1):107-110. GAO H G, WANG Y, LI S, et al. Vibration control techniques research for piezo smart composite wing[J]. Journal of Vibration, Measurement&Diagnosis, 2013, 33(S1):107-110(in Chinese).
[5] 段勇,陈前,林莎.颗粒阻尼对直升机旋翼桨叶减振效果的试验[J].航空学报, 2009, 30(11):2113-2118. DUAN Y, CHEN Q, LIN S. Experiments of vibration reduction effect of particle damping on helicopter rotor blade[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2113-2118(in Chinese).
[6] KRYLOV V V, TILMAN F J B S. Acoustic ‘black holes’ for flexural waves as effective vibration dampers[J]. Journal of Sound&Vibration, 2004, 274(3-5):605-619.
[7] KRYLOV V V, WINWARD R E T B. Experimental investigation of the acoustic black hole effect for flexural waves in tapered plate[J]. Journal of Sound and Vibration, 2007, 300(1-2):43-49.
[8] KRYLOV V V. New type of vibration dampers utilising the effect of acoustic ‘black holes’[J]. Acta Acustica united with Acustica, 2004, 90(5), 830-837.
[9] GEORGIEV V B, CUENCA J, GAUTIER F, et al. Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[J]. Journal of Sound and Vibration, 2011, 330(11):2497-2508.
[10] TANG L L, CHENG L. Enhanced acoustic black hole effect in beams with a modified thickness profile and extended platform[J]. Journal of Sound and Vibration, 2017, 391:116-126.
[11] BOWYER E P, O'BOY D J, KRYLOV V V, et al. Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile[J]. Applied Acoustics, 2012, 73(5):514-523.
[12] BOWYER E P, KRYLOV V V. Experimental investigation of damping flexural vibrations in glass fibre composite plates containing one-and two-dimensional acoustic black holes[J]. Composite Structures, 2014, 107:406-415.
[13] HASSAN S M. Free transverse vibration of elliptical plates of variable thickness with half of the boundary clamped and the rest free[J]. International Journal of Mechanical Sciences, 2004, 46(12):1861-1882.
[14] CONLON S C, FAHNLINE J B, SEMPERLOTTI F. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes[J]. The Journal of the Acoustical Society of America, 2015, 137(1):447-457.
[15] BOWYER E P, KRYLOV V V. Damping of flexural vibrations in turbofan blades using the acoustic black hole effect[J]. Applied Acoustics, 2014, 76:359-365.
[16] BOWYER E P, O'BOY D J, KRYLOV V V, et al. Experimental investigation of damping flexural vibrations in plates containing tapered indentations of power-law profile[J]. Applied Acoustics, 2013, 74(4):553-560.
[17] KRYLOV V. Acoustic black holes:Recent developments in the theory and applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2014, 61(8):1296-1306.
[18] O'BOY D J, KRYLOV V V, KRALOVIC V. Damping of flexural vibrations in rectangular plates using the acoustic black hole effect[J]. Journal of Sound and Vibration, 2010, 2010(329):4672-4688.
[19] BOWYER E P, NASH P, KRYLOV V V. Damping of flexural vibrations in glass fiber composite plates and honeycomb sandwich panels containing indentations of power-law profile[J]. Journal of the Acoustical Society of America, 2013, 132(3):2041.
[20] LI X, DING Q. Analysis on vibration energy concentration of the one-dimensional wedge-shaped acoustic black hole structure[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(10):2137-2148.
[21] 曾鹏云,郑玲,左益芳,等.基于半解析法的一维圆锥形声学黑洞梁能量聚集效应研究[J].噪声与振动控制, 2018, 38(S1):210-214. ZENG P Y, ZHENG L, ZUO Y F, et al. Analysis of the energy concentration effect of flexural vibrations in tapered rods with power-law profile based on semi-analytical method[J]. Noise and Vibration Control, 2018, 38(S1):210-214(in Chinese).
[22] TANG L L, CHENG L. Ultrawide band gaps in beams with double-leaf acoustic black hole indentations[J]. The Journal of the Acoustical Society of America, 2017, 142(5):2802-2807.
[23] ZHOU T, TANG L L, JI H L, et al. Dynamic and static properties of double-layered compound acoustic black hole structures[J]. International Journal of Applied Mechanics, 2017, 9(5):1750074.
[24] JACQUOT R G. Suppression of random vibration in plates using vibration absorbers[J]. Journal of Sound and Vibration, 2001, 248(4):585-596.
文章导航

/