针对太阳能无人机在飞行状态下可能出现的太阳能电池局部遮挡情况,开展相应的太阳能电池最大功率点追踪算法和能源控制研究。通过将发光亮度引入相对吸引力计算过程对萤火虫算法进行改进,实现了局部阴影情况下太阳能电池最大功率点的高效追踪。以此为基础,设计了考虑局部遮挡情况下太阳能无人机的太阳能电池/蓄电池混合能源状态机控制规则。以"蒲公英I"无人机为例,建立了太阳能电池阵列模型,开展了考虑局部遮挡情况下太阳能电池最大功率点追踪仿真实验;基于"蒲公英I"飞行剖面,开展了考虑局部遮挡情况的混合能源控制仿真试验。研究结果表明:改进的萤火虫算法可以实现在局部阴影情况下太阳能电池最大功率点的有效跟踪,与萤火虫算法相比收敛时间更短、且功率波动幅度更小;采用改进萤火虫算法和状态机能源管理策略,在考虑局部遮挡的飞行状态下可以实现太阳能电池/蓄电池之间的合理功率分配与控制。
Aiming at the partial shading conditions of solar cells that may occur in the flight state of solar powered UAVs, the corresponding solar cell maximum power point tracking algorithm and energy control research are carried out. The firefly algorithm is improved by introducing the illuminance into the relative attraction calculation process, achieving the efficient tracking of the maximum power point of the solar cell under the partial shading conditions. Based on this, a solar cell/battery hybrid energy state machine control rule for solar-powered UAVs considering the partial shading conditions is designed. Taking the "Dandelion I" solar-powered UAVs as an example, a solar array model is established, and the maximum power point tracking simulation test of solar cells under the partial shading conditions is carried out. Based on the "Dandelion I" flight profile, a hybrid energy control simulation experiment considering the partial shading conditions was carried out. The results show that the improved firefly algorithm can effectively track the maximum power point of the solar cell under the partial shading conditions, effectively shortening the convergence time and the power fluctuation range compared with the firefly algorithm. With improved firefly algorithm and state machine energy management strategy, reasonable power allocation control between solar cells and batteries can be achieved in the flight state considering shadows.
[1] 马东立, 包文卓, 乔宇航. 利于冬季飞行的太阳能飞机构型研究[J]. 航空学报, 2014, 35(6):1581-1591. MA D L, BAO W Z, QIAO Y H. Study of solar-powered aircraft configuration beneficial to winter flight[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1581-1591 (in Chinese).
[2] 刘莉, 杜孟尧, 张晓辉, 等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报, 2016, 37(1):144-162. LIU L, DU M Y, ZHANG X H, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162 (in Chinese).
[3] PANDAY A, BANSAL H O. A review of optimal energy management strategies for hybrid electric vehicle[J]. International Journal of Vehicular Technology, 2014, 2014:1-19.
[4] 孙超. 混合动力汽车预测能力管理研究[D].北京:北京理工大学,2016. SUN C. Research on predictive energy management of hybrid vehicles[D]. Beijing:Beijing Institute of Technology, 2016 (in Chinese).
[5] SALMASI F R. Control strategies for hybrid electric vehicles:Evolution, classification, comparison, and future trends[J]. IEEE Transactions on Vehicular Technology, 2007, 56(5):2393-2404.
[6] CARATOZZOLO P, SERRA M, RIERA J. Energy management strategies for hybrid electric vehicles[C]//IEEE International Electric Machines & Drives Conference.Piscataway,NJ:IEEE Press, 2003.
[7] ZHANG W, LI J, XU L, et al. Optimization for a fuel cell/battery/capacity tram with equivalent consumption minimization strategy[J]. Energy Conversion & Management, 2017, 134:59-69.
[8] ZHANG X H,LIU L,DAI Y L. Fuzzy state machine energy management strategy for hybrid electric uavs with pv/fuel cell/battery power system[J]. International Journal of Aerospace Engineering, 2018, 2018:1-16.
[9] LEE B,PARK P,KIM C,et al. Power managements of a hybrid electric propulsion system for UAVs[J]. Journal of Mechanical Science and Technology, 2012, 26(8):2291-2299.
[10] LEE B,KWON S,PARK P, et al. Active power management system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):3167-3177.
[11] BIDRAM A, DAVOUDI A, BALOG R S. Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays[J]. IEEE Journal of Photovoltaics, 2012, 2(4):532-546.
[12] MOHAPATRA A, NAYAK B, DAS P, et al. A review on MPPT techniques of PV system under partial shading condition[J]. Renewable & Sustainable Energy Reviews, 2017, 80:854-867.
[13] YANG X S. Firefly algorithms for multimodal optimization[J]. Mathematics, 2009, 5792:169-178.
[14] 王吉权, 王福林. 萤火虫算法的改进分析及应用[J]. 计算机应用, 2014, 34(9):2552-2556. WANG J Q, WANG F L. Improvement analysis and application of firefly algorithm[J]. Journal of Computer Applications, 2014, 34(9):2552-2556 (in Chinese).
[15] HORNG M H, LIOU R J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm[J]. Expert Systems with Applications, 2011, 38(12):14805-14811.
[16] ?UKASIK S, Z·AK S. Firefly algorithm for continuous constrained optimization tasks[C]//Computational Collective Intelligence, Semantic Web, Social Networks and Multiagent Systems, First International Conference, ICCCI 2009. Berlin:Springer Heidelberg, 2009.
[17] SENTHILNATH J, OMKAR S N, MANI V. Clustering using firefly algorithm:Performance study[J]. Swarm & Evolutionary Computation, 2011, 1(3):164-171.
[18] 刘鹏, 刘弘, 郑向伟,等. 基于改进萤火虫算法的动态自动聚集路径规划方法[J]. 计算机应用研究, 2011, 28(11):4146-4149. LIU P, LIU H, ZHENG X W, et al. Approach for dynamic group automatic aggregation[J]. Application Research of Computers, 2011, 28(11):4146-4149 (in Chinese).
[19] SUNDARESWARAN K, PEDDAPATI S, PALANI S. MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies[J]. IEEE Transactions on Energy Conversion, 2014, 29(2):463-472.
[20] SAFARUDIN Y M, PRIYADI A, PURNOMO M H, et al. Maximum power point tracking algorithm for photovoltaic system under partial shaded condition by means updating β firefly technique[C]//Proceedings of the International Conference on Information Technology and Electrical Engineering.Piscataway,NJ:IEEE Press, 2015.
[21] TESHOME D, LEE C H, LIN Y W, et al. A modified firefly algorithm for photovoltaic maximum power point tracking control under partial shading[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2017, 5(2):661-671.
[22] 蔚光辉. 绿色能源小型电动无人机总体设计[D].北京:北京理工大学, 2018. YU G H. Conceptual design for green energy electric powered small-scale UAV[D]. Beijing:Beijing Institute of Technology, 2018 (in Chinese).
[23] 张晓辉.燃料电池混合动力无人机能源管理研究[D].北京:北京理工大学, 2018. ZHANG X H. Energy management of fuel cell hybrid electric UAVs[D].Beijing:Beijing Institute of Technology, 2018 (in Chinese).