通用飞行器气动优化设计数字化集成平台-DIPasda(气动优化专栏)

  • 孙俊峰 ,
  • 周铸 ,
  • 黄勇 ,
  • 庞宇飞 ,
  • 卢风顺 ,
  • 许勇
展开
  • 1. 中国空气动力研究与发展中心计算空气动力研究所
    2. 中国空气动力研究与发展中心

收稿日期: 2019-08-06

  修回日期: 2019-09-12

  网络出版日期: 2019-10-11

Digital integrated platform for universal aircraft multidisciplinary design optimization - DIPasda

  • SUN Jun-Feng ,
  • ZHOU Zhu ,
  • HUANG Yong ,
  • PANG Yu-Fei ,
  • LU Feng-Shun ,
  • XU Yong
Expand

Received date: 2019-08-06

  Revised date: 2019-09-12

  Online published: 2019-10-11

摘要

随着计算机能力和数值计算技术的不断发展,航空工业的市场竞争越来越激烈,迫切需要精确、高效、鲁棒的设计工具应用于飞行器的改进优化和创新设计。未来航空工业的发展,需要解决多学科综合设计的关键问题,为新型高性能飞行器的设计提供有力的设计方法和设计工具。DIPasda作为复杂外形设计的通用飞行器多学科优化设计平台,研制目的主要是提供一套新型通用、鲁棒、高效的优化设计架构,应用于通用飞行器工业设计环境,改善传统设计耗时低效的状况,提高新型飞行器设计的效率和精度。DIPasda平台系统包含了优化设计过程中所需用到的各类方法,主要包括数值优化方法、几何模型参数化方法、代理模型方法、高精度的学科分析工具等。通过详细介绍平台的系统架构、主要的功能模块、伴随优化设计和多目标优化设计流程,展现了DIPasda平台系统架构设计的灵活性和功能模块的完备性。最后通过优化算例展示了系统的综合优化设计能力。

本文引用格式

孙俊峰 , 周铸 , 黄勇 , 庞宇飞 , 卢风顺 , 许勇 . 通用飞行器气动优化设计数字化集成平台-DIPasda(气动优化专栏)[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2019.123348

Abstract

With the growth in computing power and the advances in computational techniques, the growing competitiveness in air-craft industry calls for an accurate, efficient, and robust tools for advanced aircraft shape design. The development of the future aviation industry needs to solve the key problems of multidisciplinary integrated design and provide a powerful de-sign method and tools for the design of new high-performance aircraft. This paper presents an automated digitalized inte-grated platform for aerodynamics synthetic design and assessment (DIPasda) for complex shape. Our goal is to present a new general-purpose robust and efficient optimization platform which is aimed at real-life constrained designs where the conventional design approaches complicated and time-consuming. The DIPasda system contains a collection of func-tional modules for performing design and optimization studies by means of numerical optimization schemes, geometry parameterization techniques, surrogate models, high-fidelity computational analysis tools for different disciplines and so on. By introducing the system architecture of the platform in detail, the main functional modules and the multi-objective optimization process, the flexibility of the system architecture design and the completeness of the functional modules are demonstrated. At last optimization tests is presented to show the system’s design optimization capability.

参考文献

[1] MOHAMMD A Z, BREZILLON J. Shape optimization usingthe aerostructural coupled adjoint approach for viscous flow[C] //Proceedings of Evolutionary and Deterministic for Design, Optimization and Con-trol, 2011.
[2] LEOVIRIYAKIT K, JAMESON A. Case studies in aerostructural wing planform and section optimization. AIAA-200405372[R]. Reston, VA:AIAA 2004.
[3] MELVIN R G, HUFFMAN WP. Recent progress in aerodynamic design optimization[J]. Int J Number Meth Fluids, 1999, 30(2):205-216.
[4] 周铸,黄江涛,高正红等.民用飞机气动外形数值优化设计面临的挑战与展望[J]. 航空学报, 2019, 40(1):522370-522370.
ZHOU Z, HUANG J T, GAO Z H, et al. Challenges and prospects of numerical optimization design for laorge civil aircraft aerodynamic shape[J]. Acta Aero-nautica et Astronautica Sinica, 2019, 40(1):522370-522370 (in chinese). Doi:10.7527/s1000-6839. 2018. 22370.
[5] STEPHEN T, LEDOUX, WILLIAM W. et al. MDOPT-a multidisciplinary design optimization system using higher order analysis codes[C]. AIAA Paper 98-4757, August 2004, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.
[6] GRAY J, MOOREY K T, NAYLOR B A. OpenMDAO: An open source framework for multidisciplinary analysis and Optimization[C]. Proceedings of 13th AIAA/ISSMO Multidisciplinary Analysis Optimiza-tion Conference. 2010, Fort Worth, Texas, USA: AIAA.
[7] JAMESON J, PIERCE N A., MARTINELLI L. Opti-mum aerodynamics design using the Navier-Stokes equations: AIAA-97-0101[R]. Reston, VA:AIAA, 1997.
[8] NIELSEN E J, ANDERSON W K. Recent improve-ments in aerodynamic design optimization on un-structured meshes: AIAA-2001-0596, 2000[R]. Reston, VA:AIAA.
[9] 黄江涛, 周铸, 刘刚, 等.飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5):121731-121731..
HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et As-tronautica Sinica, 2018, 39(5):121731-121731 (in chinese). Doi:10.7527/S1000-6893.2017.21731.
[10] COELLO COELLO CA, VAN VELDUIZEN DA, LAMONT GB. Evolutionary algorithms for solving multi-Objective problems[M]. Kluwer Academic Pub-lishers, New York, May 2002.
[11] 郑传宇, 黄江涛, 周铸, 等. 飞翼翼型高维多目标空间多学科综合优化设计[J]. 空气动力学学报, 2017, 35(4):587-597. Doi:10.7638/kqdlxxb-2017.0079.
ZHENG C Y, HUANG J T, ZHOU Z, et al. Multidisci-plinary optimization design of high dimensional target space for flying wing airfoil[J]. Acta Aerodynamica Sinica, 2017, 35(4):587-597.
[12] Sobieszczanski-Sobieski J. Sensitivity analysis and multidisciplinary optimization for aircraft design: re-cent advance and results[J]. Journal of Aircraft, 1990,27(12):993-1001.
[13] LES PIEGL, WAYNE TILLER. The NURBS Book[M], Springer, 1997.
[14] BRENDA MKULFAN. Recent extensions and appli-cations of the “CST” universal parametric geometry representation method[C]: AIAA-2007-7709[R]. Reston, VA:AIAA, 2007.
[15] SEDERBERG T W, PARRY S R. Freeform deforming of solid geometric models[J]. Computer Graphics, 1986, 22(4):151-160.
[16] J A SAMAREH. Aerodynamic shape optimization based on Free-Form Deformation[C]: AIAA-2004-4630,[R]. Reston, VA:AIAA, 2004.
[17] PANG Y F, ZHANG S J, SUN J F. An adaptive grid rebuilding method for multi-zone structured grid[C]. 6th Asia Workshop on Computational Fluid Dynamics, 2006.
[18] 肖涵山, 陈作斌, 刘刚, 江雄. 基于Euler方程的三维自适应笛卡尔网格应用研究[J]. 空气动力学学报, 2003, 21(2):202-210.
XIAO H S, CHEN Z B, LIU G, et al. Applications of 3-D adaptive Cartesian grid algorithm based on the Euler equations[J]. Acta Aerodynamica Sinica, 2003, 21(3):202-210.
[19] 牟斌, 肖中云, 周铸, 等. 多重网格技术在复杂粘性流场计算中的应用及研究[J]. 空气动力学学报, 2006, 24(1):51-54.
MOU B, XIAO Z Y, ,ZHOU Z, et al. Application and investigation of multi-block multi-grid method in complicated viscous flow fields calculation[J]. Acta Aerodynamica Sinica, 2006, 24(1):51-54 .
[20] M D MCKAY, W J CONOVER, R J BECKMAN. A comparison of three methods for selecting values of input variables in the analysis of output from a com-puter code[J]. Technometrics, 1979, 21(3): 239–245.
[21] 方开泰,马长兴. 正交与均匀试验设计[M]. 北京: 科学与试验出版社,1980.
FANG K T, MA C X. Orthogonal and uniform exper-imental design[M]. Beijing: Science Press, 1980 (in Chinese).
[22] SHINKYU JEONG, MITSUHIRO MURAYMA. Efficient optimization design method using Kriging model. Journal of Aircraft , 2005,42(2):413-420.
[23] 黄江涛, 高正红, 余婧, 等. 大型民用飞机气动外形典型综合设计方法[J]. 航空学报, 2019, 40(2):522369-522369.
HUANG J T, GAO Z H , YU J, et al. A typical inte-grated design method design method for aerodynam-ics shape optimization of large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):522369-522369 ( in chinese).
[24] 黄江涛, 周铸, 余婧, 等. 考虑飞行器动力系统进排气效应的设计参数灵敏度分析研究[J]. 推进技术, 2019, 40(2):250-258.
HUANG J T, ZHOU Z, YU J, et al. Sensitivity analy-sis of design variables considering intake and exhaust effects[J]. Journal of propulsion technology, 2019,40(2): 250-258 (in chinese).
文章导航

/