电子电气工程与控制

基于隶属度和LMK-ELM的航空电子部件诊断方法

  • 朱敏 ,
  • 许爱强 ,
  • 李睿峰 ,
  • 戴金玲
展开
  • 海军航空大学, 烟台 264001

收稿日期: 2019-07-09

  修回日期: 2019-08-23

  网络出版日期: 2019-09-16

基金资助

国家自然科学基金(11802338);山东省自然科学基金(ZR2017MF036)

Diagnosis method for avionics based on membership and LMK-ELM

  • ZHU Min ,
  • XU Aiqiang ,
  • LI Ruifeng ,
  • DAI Jinling
Expand
  • Naval Aviation University, Yantai 264001, China

Received date: 2019-07-09

  Revised date: 2019-08-23

  Online published: 2019-09-16

Supported by

National Natural Science Foundation of China (11802338); National Science Foundation of Shandong Province (ZR2017MF036)

摘要

为提高航空电子部件模块级故障诊断精度,提出一种新的面向"软聚类"的局部多核学习(LMKL)-超限学习机(ELM)离线诊断方法。通过引入模糊C均值聚类对样本空间进行模糊划分,挖掘聚类内部多样性的同时,实现了对过学习的抑制;将模糊划分产生的隶属度信息融入LMKL-ELM的优化过程,运用基于初始-对偶混合优化问题的三步优化策略克服了局部核权重二次非凸的问题,在l1-范数与l2-范数约束下分别给出了相应的更新方法。将所提方法应用于某型机前端接收机,结果表明:与4种流行的多核诊断方法相比,该方法可有效避免漏警、抑制虚警,在l1-范数和l2-范数约束下,其诊断精度比其他方法的平均值分别提升了4.09%和5.13%。

本文引用格式

朱敏 , 许爱强 , 李睿峰 , 戴金玲 . 基于隶属度和LMK-ELM的航空电子部件诊断方法[J]. 航空学报, 2019 , 40(12) : 323277 -323277 . DOI: 10.7527/S1000-6893.2019.23277

Abstract

To improve the accuracy of module-level fault diagnosis for avionics, a new off-line diagnosis method based on soft-clustering-sensitive Localized Multi-Kernel Learning (LMKL) and Extreme Learning Machine (ELM) is proposed. By introducing fuzzy C-means clustering to partition the sample space, the over-learning is suppressed while mining the diversity within the cluster. The membership information generated by the fuzzy partition is integrated into the optimization process of LMKL-ELM. A three-step optimization strategy based on the initial-dual hybrid optimization problem is used to overcome the quadratic non-convexity of the local kernel weights. The corresponding updating methods for these weights are given under l1-norm constraint and l2-norm constraint. The proposed method is applied to the front-end receiver. Compared with four popular multi-kernel diagnostic algorithms, the results show that the proposed method can effectively avoid missing alarm and suppress false alarm. The diagnostic accuracy is 4.09% higher in l1-norm and 5.13% higher in l2-norm than the average of other methods.

参考文献

[1] 孙伟超, 李文海, 李文峰. 融合粗糙集与D-S证据理论的航空装备故障诊断[J]. 北京航空航天大学学报, 2015, 41(10):1902-1909. SUN W C, LI W H, LI W F. Avionic devices fault diagnosis based on fusion method of rough set and D-S theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10):1902-1909(in Chinese).
[2] KNÜPPEL T, BLANKE M, ØSTERGAARD J. Fault diagnosis for electrical distribution systems using structural analysis[J]. International Journal of Robust and Nonlinear Control, 2014, 24:1446-1465.
[3] JAMIL T, MOHAMMED I. Simulation of VICTOR algorithm for fault diagnosis of digital circuits[J]. International Journal of Computer Theory and Engineering, 2015, 7(2):103-107.
[4] DAI X W, GAO Z W. From model, signal to knowledge:A data-driven perspective of fault detection and diagnosis[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4):2226-2238.
[5] GAO Z W, CECATI C, DING S X. A survey of fault diagnosis and fault tolerant techniques-Part I:Fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6):3757-3767.
[6] LIU Z B, JIA Z, VONG C M, et al. Capturing high-discriminative fault features for electronics-rich analog system via deep learning[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3):1213-1226.
[7] 赵光权, 葛强强, 刘小勇, 等. 基于DBN的故障特征提取及诊断方法研究[J]. 仪器仪表学报, 2016, 37(9):1946-1953. ZHAO G Q, GE Q Q, LIU X Y, et al. Fault feature extraction and diagnosis based on deep belief network[J]. Chinese Journal of Scientific Instrument, 2016, 37(9):1946-1953(in Chinese).
[8] 李可, 王全鑫, 宋世民, 等. 基于改进人工神经网络的航天器电信号分类方法[J]. 北京航空航天大学学报, 2016, 42(3):596-601. LI K, WANG Q X, SONG S M, et al. Spacecraft electrical signal classification method based onimproved artificial neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3):596-601(in Chinese).
[9] ZHANG M J, CHAI K, HUANG J, et al. Combined improved EEMD with SVM in the bearing low dimensional small sample fault diagnosis[J]. Applied Mechanics & Materials, 2013, 427:354-357.
[10] GUO Y, MA J, XIAO F, et al. SVM with optimized parameters and its application to electronic system fault diagnosis[C]//Prognostics and Health Management. Piscataway, NJ:IEEE Press, 2012:1-6.
[11] 张伟, 许爱强, 平殿发, 等. 基于近邻传播聚类的航空电子部件LMK诊断模型[J]. 北京航空航天大学学报, 2018, 44(8):1693-1704. ZHANG W, XU A Q, PING D F, et al. Localized multi-kernel diagnosis model for avionics based on affinity propagation clustering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8):1693-1704(in Chinese).
[12] 闫涛, 赵文俊, 胡秀洁, 等. 基于信息融合技术的航空电子设备故障诊断研究[J]. 电子科技大学学报, 2015, 44(3):392-396. YAN T, ZHAO W J, HU X J, et al. Fault diagnosis of avionic devices based on information fusion technology[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(3):392-396(in Chinese).
[13] 吕克洪, 程先哲, 李华康, 等. 电子设备故障预测与健康管理技术发展新动态[J]. 航空学报, 2019, 40(11):323285. LYU K H, CHENG X Z, LI H K, et al. New developments of prognostic and health management technology for electronic equipment[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323285(in Chinese).
[14] 刘艳芳, 吕江花, 马世龙, 等. 航电系统并行检测过程与检测设备解耦方法[J]. 航空学报, 2019, 40(8):322818. LIU Y F, LYU J H, MA S L, et al. Decoupling method for test process and test devices in parallel testing of avionics systems[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):322818(in Chinese).
[15] 邴其春, 龚勃文, 杨兆升, 等. 一种组合核相关向量机的短时交通流局域预测方法[J]. 哈尔滨工业大学学报, 2017, 49(3):144-149. BING Q C, GONG B W, YANG Z S, et al. A short-term traffic flow local prediction method of combined kernel function relevance vector machines[J]. Journal of Harbin Institute of Technology, 2017, 49(3):144-149(in Chinese).
[16] 李军, 李大超. 基于优化核极限学习机的风电功率时间序列预测[J]. 物理学报, 2016, 65(13):39-48. LI J,LI D C. Wind power time series prediction using optimized kernel extreme learning machine method[J]. Acta Physica Sinica, 2016, 65(13):39-48(in Chinese).
[17] FENG J, JIAO L C, SUN T, et al. Multiple kernel learning based on discriminative kernel clustering for hyperspectral band selection[J]. IEEE Transactions on Geosciences and Remote Sensing, 2016, 54(11):6516-6530.
[18] GÖNEN M, ALPAYDIN E. Multiple kernel learning algorithms[J]. Journal of Machine Learning Research, 2011, 12:2211-2268.
[19] ZHANG C L, HE Y G, YUAN L F, et al. A novel approach for diagnosis of analog circuit fault by using GMKL-SVM and PSO[J]. Journal of Electronic Testing, 2016, 32:531-540.
[20] LI Y X, REN C Q, BO J Y, et al. The application of GMKL algorithm to fault diagnosis of local area network[J]. Journal of Networks, 2014, 9(3):747-753.
[21] RAKOTOMAMONJY A, BACH F R, CANU S, et al. SimpleMKL[J]. Journal of Machine Learning Research, 2008, 9:2491-2521.
[22] LIU X W, WANG L, ZHANG J, et al. Sample-adaptive multiple kernel learning[C]//28th AAAI Conference on Artificial Intelligence, 2014:1975-1981.
[23] HAN Y N, YANG K D, MA Y L, et al. Localized multiple kernel learning via sample-wise alternating optimization[J]. IEEE Transactions on Cybernetics, 2014, 44(1):137-147.
[24] GÖNEN M, ALPAYDIN E. Localized algorithms for multiple kernel learning[J]. Pattern Recognition, 2013, 46:795-807.
[25] HAN Y N, YANG K D, YANG Y X, et al. On the impact of regularization variation on localized multiple Kernel learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6):2625-2630.
[26] YANG J J, LI Y N, TIAN Y H, et al. Group-sensitive multiple kernel learning for object recognition[J]. IEEE Transactions on Image Processing, 2012, 21(5):2838-2852.
[27] HAN Y N, YANG K D, YANG Y X, et al. Localized multiple Kernel learning with dynamical clustering and matrix regularization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(2):486-499.
[28] LIU X W, WANG L, HUANG G B, et al. Multiple kernel extreme learning machine[J]. Neurocomputing, 2015, 149:253-264.
[29] BEZDEK J C, EHRLICH R, FULL W. FCM:The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2-3):191-203.
[30] SOKOLOVA M, LAPALME G. A systematic analysis of performance measures for classification tasks[J]. Information Processing and Management, 2009, 45(4):427-437.
[31] PHOUNGPHOL P, ZHANG Y Q, ZHAO Y C. Robust multiclass classification for learning from imbalanced biomedical data[J]. Tsinghua Science and Technology, 2012, 17(6):619-628.
[32] MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11):2579-2605.
文章导航

/