电子电气工程与控制

过虚拟交班点的能量最优制导律

  • 李晨迪 ,
  • 王江 ,
  • 李斌 ,
  • 何绍溟 ,
  • 张彤
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 北京理工大学 无人机自主控制技术北京市重点实验室, 北京 100081;
    3. 北方华安工业集团, 齐齐哈尔 161006

收稿日期: 2019-06-27

  修回日期: 2019-08-01

  网络出版日期: 2019-09-16

基金资助

国家自然科学基金(U1613225)

Energy-optimal guidance law with virtual hand-over point

  • LI Chendi ,
  • WANG Jiang ,
  • LI Bin ,
  • HE Shaoming ,
  • ZHANG Tong
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Key Laboratory of UAV Autonomous Control, Beijing Institute of Technology, Beijing 100081, China;
    3. Hua An Industry Group Company Limited, Qiqihar 161006, China

Received date: 2019-06-27

  Revised date: 2019-08-01

  Online published: 2019-09-16

Supported by

National Natural Science Foundation of China (U1613225)

摘要

针对固定目标的导弹过虚拟交班点制导问题,在希尔伯特空间下,基于最优化理论设计了有无终端落角约束两种情况下的全局能量最优制导律。通过对模型进行线性化,将提出的最优制导模型转化为线性二次型最优控制问题,在此基础上利用零控脱靶量(ZEM)概念对系统模型进行降阶,并推导出解析解。设计的制导律可以使导弹准确经过虚拟交班点,并实现期望终端落角。仿真结果表明,与经典制导律对比,该制导律可以显著减少全局控制能量消耗。

本文引用格式

李晨迪 , 王江 , 李斌 , 何绍溟 , 张彤 . 过虚拟交班点的能量最优制导律[J]. 航空学报, 2019 , 40(12) : 323249 -323249 . DOI: 10.7527/S1000-6893.2019.23249

Abstract

Aiming at the problem of fixed target missile guidance with virtual hand-over point, a global energy optimal guidance law with/without terminal angle constraint is designed based on the optimization theory in Hilbert space. By linearizing the model, the proposed optimal guidance model is transformed into a linear quadratic opti-mal control problem. Then the concept of Zero-Effort-Miss (ZEM) is used to reduce the order of the system, deriving the analytical solution. The proposed guidance law can ensure the missile pass through the virtual hand-over point accurately and reached the desired terminal angle. The simulation results show that, compared with the classical guidance law, the proposed guidance law can significantly reduce the energy consumption of global control.

参考文献

[1] 刘海军, 王丽娜. 复合制导防空导弹中末制导交班问题研究[J]. 现代防御技术, 2006, 34(2):29-33. LIU H J, WANG L N. Study on handover problem of compound guidance missile weapon[J]. Modern Defense Technology, 2006, 34(2):29-33(in Chinese).
[2] 姚郁, 郑天宇,贺风华, 等.飞行器末制导中的几个热点问题与挑战[J].航空学报,2015,36(8):2696-2716. YAO Y, ZHENG T Y, HE F H. Several hot issues and challenges in terminal guidance of flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(8):2696-2716(in Chinese).
[3] 唐明南, 郑学合,王天舒,等.多平台信息下机动目标拦截中末制导交班研究[J].系统工程与电子技术,2017,39(12):2757-2764. TANG M N, ZHENG X H, WANG T S, et al. Handover of guidance from midcourse to terminal in the maneuvering target interception based on multi-platform information[J]. Systems Engineering and Electronics, 2017,39(12):2757-2764(in Chinese).
[4] SHEHAB S, RODRIGUES L. Preliminary results on UAV path following using piecewise-affine control[C]//IEEE Conference on Control Applications. Piscataway, NJ:IEEE Press, 2005.
[5] YU M J, ATKINS E M, KOLMANOVSKY I, et al. Trim-commanded adaptive control for waypoint-defined trajectory following[C]//AIAA Guidance, Navigation, and Control (GNC) Conference. Reston, VA:AIAA, 2013.
[6] 张友安, 梁勇, 刘京茂, 等. 基于轨迹成型的攻击角度与时间控制[J]. 航空学报, 2018, 39(9):322009. ZHANG Y A, LIANG Y, LIU J M, et al. Trajectory reshaping based impact angle and time control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):322009(in Chinese).
[7] WHANG I H, HWANG T W. Horizontal waypoint guid ance design using optimal control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3):1116-1120.
[8] MOON G, KIM Y. Optimum flight path design passing through waypoints for autonomous flight control system[J]. Engineering Optimization, 2013, 37(7):755-774.
[9] RYOO C K, SHIN H S, TAHK M J. Energy optimal waypoint guidance synthesis for antiship missiles[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46(1):80-95.
[10] 孙胜, 张华明, 周荻. 考虑自动驾驶仪动特性的终端角度约束滑模导引律[J]. 宇航学报, 2013, 34(1):69-78. SUN S, ZHANG H M, ZHOU D. Sliding mode guidance law with autopilot lag for terminal angle constrained trajectories[J]. Journal of Astronautics, 2013, 34(1):69-78(in Chinese).
[11] RYOO C K, CHO H, TAHK M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4):724-732.
[12] RYOO C K, CHO H, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3):483-492.
[13] 张友安, 黄诘,孙阳平.带有落角约束的一般加权最优制导律[J].航空学报, 2014,35(3):848-856. ZHANG Y A, HUANG J, SUN Y P. Generalized weighted optimal guidance laws with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2014,35(3):848-856(in Chinese).
[14] 闫梁, 赵继广,沈怀荣, 等.带末端碰撞角约束的三维联合偏置比例制导律设计[J].航空学报,2014,35(7):1999-2010. YAN L, ZHAO J G, SHEN H R, et al. Three-dimensional united biased proportional navigation guidance law for interception of targets with angular constraints[J]. Acta Aeronautica et Astronautica Sinica, 2014,35(7):1999-2010(in Chinese).
[15] ERER K S, MERTTOPCUOGLU O. Indirect impact-angle-control against stationary targets using biased pure proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2):700-704.
[16] 郭建国, 韩拓,周军, 等.基于终端角度约束的二阶滑模制导律设计[J]. 航空学报, 2017,38(2):210-219. GUO J G, HAN T, ZHOU J, et al. Second-order sliding-mode guidance law with impact angle constraint[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(2):210-219(in Chinese).
[17] JEON I S, LEE J I. Optimality of proportional navigation based on nonlinear formulation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4):2051-2055.
[18] ZARCHAN P. Tactical and strategic missile guidance[M]. Reston, VA:AIAA, 2012:569-577.
[19] SHAFERMAN V, SHIMA T. Linear quadratic guidance laws for imposing a terminal intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1400-1412.
[20] RATNOO A, HAYOUN S Y, GRANOT A, et al. Path following using trajectory shaping guidance[C]//AIAA Guidance, Navigation, and Control (GNC) Conference. Reston, VA:AIAA, 2013.
[21] HE S, LEE C-H, SHIN H-S. Minimum-effort waypoint-following guidance[J/OL]. Journal of Guidance, Control, and Dynamics,(2019-01-30)[2019-06-27].http://dspace.lib.cranfield.ac.uk/handle/1826/13904.
[22] 王日爽. 泛函分析与最优化理论[M]. 北京:北京航空航天大学出版社, 2003:98-105. WANG R S. Functional analysis and optimization theory[M]. Beijing:Beihang University Press, 2003:98-105(in Chinese).
文章导航

/