固体力学与飞行器总体设计

CFRP超高周疲劳损伤演化过程

  • 崔文斌 ,
  • 陈煊 ,
  • 陈超 ,
  • 程礼 ,
  • 丁均梁 ,
  • 张晖
展开
  • 空军工程大学 航空工程学院, 西安 710038

收稿日期: 2019-06-11

  修回日期: 2019-07-09

  网络出版日期: 2019-09-16

基金资助

国家自然科学基金青年项目(11402302);中国博士后科学基金(2016M592923);陕西省自然科学基金(2016JQ1031);陕西省自然科学基础研究计划(2018JQ5175)

Damage evolution process of CFRP in very high cycle fatigue

  • CUI Wenbin ,
  • CHEN Xuan ,
  • CHEN Chao ,
  • CHENG Li ,
  • DING Junliang ,
  • ZHANG Hui
Expand
  • Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China

Received date: 2019-06-11

  Revised date: 2019-07-09

  Online published: 2019-09-16

Supported by

National Natural Science Foundation of China Youth Program (11402302); China Postdoctoral Science Foundation (2016M592923); Natural Science Foundation of Shaanxi Province (2016JQ1031); Shaanxi Province Natural Science Basic Research Program Funding Project (2018JQ5175)

摘要

碳纤维增强树脂基复合材料(CFRP)在航空航天等领域得到广泛应用,CFRP构件的超高周疲劳问题逐渐凸显出来。本文采用超声三点弯曲疲劳试验系统对CFRP复合材料的损伤演化过程进行研究。结果表明:CFRP复合材料在超高周三点弯曲加载下的S-N曲线呈阶梯状,尤其在108周次后,其疲劳强度明显下降。通过对CFRP复合材料在同一视场不同周次下的损伤过程进行分析,发现该材料在超高周加载下的损伤形貌主要表现为3种特征:纤维束交叉处基体损坏、近纤维束平行段基体空洞、基体贯穿,并随着加载周次的增加,其损伤过程也按照这3种特征依次呈现出来。

本文引用格式

崔文斌 , 陈煊 , 陈超 , 程礼 , 丁均梁 , 张晖 . CFRP超高周疲劳损伤演化过程[J]. 航空学报, 2020 , 41(1) : 223212 -223212 . DOI: 10.7527/S1000-6893.2019.23212

Abstract

Carbon Fiber Reinforced Polymers (CFRP) has been widely used in aerospace and other fields. The ultra-high cycle fatigue of CFRP components has become more and more obvious. In this paper, the damage evolution process of CFRP is experimentally investigated via ultrasonic fatigue testing system for cyclic three-point bending. The results indicated that the S-N curve of CFRP composites presented a step-wise shape under the ultra-high testing for cyclic three-point bending, and especially, the fatigue strength decreases significantly after the cycles are more than 108. By investigating the damage evolution process of CFRP in the same field of view, this paper found that the damage morphology of CFRP composites under ultra-high cycle loading is mainly characterized by the matrix damage at the intersection of fiber bundles, near-fiber bundle parallel section matrix cavity, and matrix penetration. With the increase of test cycles, the damage process is also presented in turn according to the above three characteristics.

参考文献

[1] BALE J, VALOT E, MONIN M, et al. Tomography observation of fiber reinforced composites after fatigue testing[J]. Applied Mechanics and Materials, 2015, 799-800:937-941.
[2] 程礼, 焦胜博, 李全通,等. 超高周疲劳与断裂[M]. 北京:国防工业出版社, 2017:3. CHENG L, JIAO S B, LI Q T, et al. Very high cycle fatigue and fracture[M]. Beijing:National Defense Industry Press, 2017:3(in Chinese).
[3] FENG Y, HE Y T, TAN X F. Investigation on impact damage evolution under fatigue load and shear-after-impact-fatigue (SAIF) behaviors of stiffened composite panels[J]. International Journal of Fatigue, 2017, 100:308-321.
[4] BACKE D, BALLE F, EIFLER D. Fatigue testing of CFRP in the Very High Cycle Fatigue (VHCF) regime at ultrasonic frequencies[J]. Composites Science and Technology, 2015, 106:93-99.
[5] JAMES M, MALLB S, LARRY P,et al. Frequency dependence of high-cycle fatigue behavior of CVI C/SiC at room temperature[J]. Composites Science and Technology, 2003, 63:2121-2131.
[6] 顾轶卓, 李敏, 李艳霞,等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Aeronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[7] 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7):1787-1803. MA B Q, ZHOU Z G. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J]. Acta Aeronautica et Aeronautica Sinica, 2014, 35(7):1787-1803(in Chinese).
[8] WANG Y,CONSTANTINOS S. Fatigue behaviour of fibre-reinforced composite T-joints[J]. Matec Web of Conferences, 2018, 165:07004.
[9] FENG Y, HE Y T, ZHANG H Y. Effect of fatigue loading on impact damage and buckling/post-buckling behaviors of stiffened composite panels under axial compression[J]. Composite Structures, 2017, 164:248-262.
[10] HOSOI A,ARAO Y,KAWADA H. Transverse crack growth behavior considering free edge effect in quasi-Isotropic CFRP laminates under high cycle fatigue loading[J]. Composites Science and Technology, 2009, 69(9):1388-1393.
[11] HOSOI A, ARAO Y, KARASAWA H, et al. High-cycle fatigue characteristics of quasiisotropic CFRP laminates over 108 cycles[J]. International Journal of Fatigue, 2010, 32(1):29-36.
[12] HOSOI A. Quantitative evaluation of fatigue damage growth in CFRP laminates that changes due to applied stress level[J]. International Journal of Fatigue, 2011, 33(6):781-787.
[13] SILVAIN B A,KIESEABACH R,MARTENS J H. Fatigue strength of carbon fibre composites up to the gigacycle regime(gigacycle-composites)[J]. International Journal of Fatigue, 2006, 28:261-270.
[14] GUDE M,HUFENBACH W, KOCH I, et al. Fatigue testing of carbon fibre reinforced polymers under VHCF loading[J]. Procedia Materials Science, 2013, 2:18-24.
[15] ADAM J T,HORST P. Experimental investigation of the very high cycle fatigue of GFRP[90/0]s cross-ply-specimens subjected to high-frequency four-point-bending[J]. Composites Science and Technology, 2014, 101:62-70.
[16] HEINZ S, BALLE F, WAGNER G. Innovative ultrsonic testing facility for fatigue experiments in the VHCF regime[J]. Materialpruefung, 2012, 54:750-755.
[17] BERTHEL B, CHRYSOCHOOS A, WATTRISSE B, et al. Infrared image processing for the calorimetric analysis of fatigue phenomenon[J]. Experimental Mechanics, 2008, 48(1):79-90.
[18] 薛红前. 超声弯曲疲劳实验装置:中国,101819114[P]. 2010-10-16. XUE H Q.Ultrasonic bending fatigue test device:China,101819114[P]. 2010-10-16(in Chinese).
[19] 薛红前. 超声振动载荷下材料的超高周疲劳性能研究[D]. 西安:西北工业大学,2006. XUE H Q. Investigation on fatigue behavior of materials in very high cycle regime under vibratory loading[D]. Xi'an:Northwestern Polytechnical University, 2006(in Chinese).
[20] HOSOI A, TAKAMURA K, SATO N, et al. Quantitative evaluation of fatigue damage growth in CFRP laminates that changes due to applied stress level[J]. International Journal of Fatigue, 2011, 33:781-787.
[21] HOSOI A, KAWADA H, YOSHINO H. Fatigue characteristic of quasiisotropic CFRP laminates subjected to variable amplitude cyclic two stage loading[J]. International Journal of Fatigue, 2006, 28:1284-1289.
[22] TAKEDA N, OGIHARA S. Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates[J]. Composites Science and Technology, 1994, 52:309-318.
文章导航

/