[1] 王建军, 李其汉. 航空发动机叶盘结构流体激励耦合振动[M]. 北京:国防工业出版社,2017. WANG J J, LI Q H. Fluid-induced coupled vibration of aeroengine blade disk structures[M]. Beijing:National Defense Industry Press, 2017(in Chinese).
[2] THOMAS O, DUCARNE J, DEÜ J F. Performance of piezoelectric shunts for vibration reduction[J]. Smart Materials and Structures, 2012, 21(1):15008.
[3] LI L, DENG P, FAN Y. Dynamic characteristics of a cyclic-periodic structure with a piezoelectric network[J]. Chinese Journal of Aeronautics, 2015, 28(5):1426-1437.
[4] LIU J Z, LI L, FAN Y. A comparison between the fric-tion and piezoelectric synchronized switch dampers for blisks[J]. Journal of Intelligent Material Systems and Structures, 2018, 29:2693-2705.
[5] 李琳, 马皓晔, 范雨,等. 用于叶片减振的压电材料分布拓扑优化[J]. 航空动力学报, 2019, 34(2):257-266. LI L, MA H Y, FAN Y, et al. Topological optimization of piezoelectric materials on the blades for vibration reduction of bladed disks[J]. Journal of Aerospace Power, 2019, 34(2):257-266(in Chinese).
[6] ALDO A F. Friction damping and isolation systems[J]. Journal of Mechanical Design, 1995, 117:196-206.
[7] YANG B D, MENQ C H. Characterization of contact kinematics and application to the design of wedge dampers in turbomachinery blading:Part 1-stick-slip contact kinematics[J]. Journal of Engineering for Gas Turbines and Power Transactions of The ASME, 1998, 120(2):410-417.
[8] SRINIVASAN A V, CUTTS D G. Dry friction damping mechanisms in engine blades[J]. Journal of Engineering for Power, 1983, 105(2):332-341.
[9] 李琳, 刘久周, 李超. 航空发动机中的干摩擦阻尼器及其设计技术研究进展[J]. 航空动力学报, 2016, 31(10):2305-2317. LI L, LIU J Z, LI C. Review of the dry friction dampers in aero-engine and their design technologies[J]. Journal of Aerospace Power, 2016, 31(10):2305-2317(in Chinese).
[10] 洪杰, 文敏, 马艳红,等. 凸肩径向位置对风扇叶片振动特性的影响[J]. 航空动力学报, 2015, 30(12):2817-2823. HONG J, WEN M, MA Y H, et al. Influence of the shroud's radial position on vibration characteristics of the fan blade[J]. Journal of Aerospace Power, 2015, 30(12):2817-2823(in Chinese).
[11] 刘继兴,张大义,王存,等. 带冠涡轮叶片振动特性的子区间组合分析方法[J]. 推进技术, 2017, 38(10):2323-2330. LIU J X, ZHANG D Y WANG C, et al. Sub-interval combination method for dynamical characteristics of shrouded turbine blades[J]. Journal of Propulsion Technology, 2017, 38(10):2323-2330(in Chinese).
[12] 史亚杰, 单颖春, 朱梓根. 带凸肩叶片非线性振动响应分析[J]. 航空动力学报, 2009, 24(5):1158-1165. SHI Y J, SHAN Y C, ZHU Z G. Analysis of nonlinear response of shrouded blades system[J]. Journal of Aerospace Power, 2009, 24(5):1158-1165(in Chinese).
[13] GRIFFIN J H. Friction damping of resonant stresses in gas turbine engine airfoils[J]. Journal of Engineering for Power, 2908, 102(2):329-333.
[14] 阳刚, 周标, 臧朝平,等. 缘板阻尼结构减振特性的影响因素分析[J]. 航空动力学报, 2019, 34(1):115-124. YANG G, ZHOU B, ZANG C P, et al. Analysis of the effect factors on damping characteristics for underplatform dampers[J]. Journal of Aerospace Power, 2019, 34(1):115-124(in Chinese).
[15] 李琳, 刘久周, 李超. 干摩擦阻尼器对宽频多阶次激励减振效果分析[J]. 航空动力学报, 2016, 31(9):2171-2180. LI L, LIU J Z, LI C. Analysis on damping effect of dry friction damper under wideband multi-harmonic excitation[J]. Journal of Aerospace Power, 2016, 31(9):2171-2180(in Chinese).
[16] 张大义, 杨诚, 夏颖,等. 带缘板阻尼结构转子叶片振动特性的影响参数分析[J].振动与冲击,2019, 38(10):221-227. ZHANG D Y, YANG C, XIA Y, et al. Influential parameters of rotating blades with under platform dampers[J]. Journal of Vibration and Shock, 2019, 38(10):221-227(in Chinese).
[17] FIRRONE C M, ZUCCA S. Passive control of vibration of thin-walled gears:Advanced modelling of ring dampers[J]. Nonlinear Dynamics, 2014, 76(1):263-280.
[18] ZENG L, LI L. The dynamic friction performance of damping-rings in labyrinth air seal for vibration control[C]//Proceeding of ASME Turbo Expo 2009. New York:ASME, 2009:1-12.
[19] 李琳, 范雨, 戴光昊. 二自由度扭转干摩擦系统的频域响应计算方法[J]. 航空动力学报, 2013, 28(4):850-857. LI L, FAN Y, DAI G H. Frequency domain solution of 2-DOF torsional dry friction system[J]. Journal of Aerospace Power, 2013, 28(4):850-857(in Chinese).
[20] 范雨, 戴光昊, 李琳.多界面干摩擦系统的减振特性及设计方法研究[J]. 工程力学, 2014, 31(3):237-246. FAN Y, DAI G H, LI L. On design and damping characteristics of multi-interface dry friction damper[J]. Engineering Mechanics, 2014, 31(3):237-246(in Chinese).
[21] 张大义, 张嵩, 付俭伟,等. 转子叶片缘板阻尼结构设计方法[J]. 航空动力学报, 2018, 33(4):961-968. ZHANG D Y, ZHANG S, FU J W, et al. Design method for the under platform damper of rotor blade[J]. Journal of Aerospace Power, 2018, 33(4):961-968(in Chinese).
[22] PETROV E P, EWINS D J. Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks[J]. Journal of Turbomachinery Transactions of the ASME, 2003, 125(2):364-371.
[23] PETROV E P, EWINS D J. Advanced modeling of underplatform friction dampers for analysis of bladed disk vibration[J]. Journal of Turbomachinery Transactions of the ASME, 2007, 129(1):143-150.
[24] CHARLEUX D, GIBERT C, THOUVEREZ F, et al. Numerical and experimental study of friction damping in blade attachments of rotating bladed disks[J]. International Journal of Rotating Machinery, 2006(1):1-13.
[25] CRAIG R R, BAMPTON M C. Coupling of substructures for dynamics analyses[J]. AIAA Journal,1968, 6(7), 1313-1319.
[26] LAXALDE D, THOUVEREZ F, LOMBARD J P. Forced response analysis of integrally bladed disks with friction ring dampers[J]. Journal of Vibration and Acoustics, 2010, 132(1):011013.1-011013.9.
[27] SIEWERT C, PANNING L, WALLASCHEK J, et al. Multiharmonic forced response analysis of a turbine blading coupled by nonlinear contact forces[J]. Journal of Engineering for Gas Turbines and Power Transactions of The ASME, 2010, 132(8):082501.
[28] KRACK M, SCHEIDT L P V, WALLASCHEK J. A method for nonlinear modal analysis and synthesis:Application to harmonically forced and self-excited mechanical systems[J]. Journal of Sound and Vibration, 2013, 332(25):6798-6814.
[29] JOANNIN C, THOUVEREZ F, CHOUVION B. Reduced-order modelling using nonlinear modes and triple nonlinear modal synthesis[J]. Computers & Structures, 2018, 203:18-33.
[30] WU Y G, LI L, FAN Y, et al. Design of semi-active dry friction dampers for steady-state vibration:Sensitivity analysis and experimental studies[J]. Journal of Sound and Vibration, 2019, 459:114850.
[31] BORRAJO J M, ZUCCA S, GOLA M, et al. Analytical formulation of the jacobian matrix for non-linear calculation of the forced response of turbine blade assemblies with wedge friction dampers[J]. International Journal of Non-linear Mechanics, 2006, 41(10):1118-1127.
[32] SCHWINGSHACKL C W, PETROV E P, EWINS D J. Effects of contact interface parameters on vibration of turbine bladed disks with underplatform dampers[J]. Journal of Engineering for Gas Turbine and Power, 2012, 134(3):032507.1-032507.8.
[33] HERZOG A, KRACK M, SCHEIDT L P V, et al. Comparison of two widely-used frequency-time domain contact models for the vibration simulation of shrouded turbine blades:GT2014-26226[R].New York:ASME, 2014.
[34] KRACK M, SALLES L, THOUVEREZ F. Vibration prediction of bladed disks coupled by friction joints[J]. Archives of Computational Methods in Engineering, 2017, 24(3):589-636.
[35] KAMMER D C, BAKER M. Comparison of the Craig-Bampton and residual flexibility methods of substructure representation[J]. Journal of Aircraft, 1987, 24(4):262-267.
[36] KAMMER D C, ALLEN M S, MAYES R L, et al. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator[J]. Journal of Sound and Vibration, 2015,359:179-194.
[37] TANG W, EPUREANU B I. Nonlinear dynamics of mistuned bladed disks with ring dampers[J]. International Journal of Non-Linear Mechanics, 2017, 97:30-40.
[38] TANG W, EPUREANU B I. Geometric optimization of dry friction ring dampers[J]. International Journal of Non-linear Mechanics, 2019, 109:40-49.
[39] WU Y G, FAN Y, LI L, et al. Sensitivity analysis and design of an open-loop active normal force for dry friction dampers[C]//ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York:ASME, 2017.