固体力学与飞行器总体设计

基于加速动态拉格朗日法的摩擦片阻尼分析

  • 马皓晔 ,
  • 李琳 ,
  • 范雨 ,
  • 吴亚光
展开
  • 1. 北京航空航天大学 能源与动力工程学院, 北京 100083;
    2. 北京航空航天大学 航空发动机结构强度北京市重点实验室, 北京 100083

收稿日期: 2019-07-12

  修回日期: 2019-08-14

  网络出版日期: 2019-09-09

基金资助

国家自然科学基金(51675022,11702011)

Damping performance analysis of friction patches using an accelerated dynamic Lagrange method

  • MA Haoye ,
  • LI Lin ,
  • FAN Yu ,
  • WU Yaguang
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
    2. Beijing Key Laboratory of Aero-Engine Structure and Strength, Beihang University, Beijing 100083, China

Received date: 2019-07-12

  Revised date: 2019-08-14

  Online published: 2019-09-09

Supported by

National Natural Science Foundation of China (51675022, 11702011)

摘要

提出了一种可用于增强薄壁结构阻尼的波纹形片状干摩擦阻尼器,并利用一种改进的非线性动力学计算方法对其稳态响应特性进行了分析。首先通过两重减缩使非线性系统自由度变成接触节点间相对位移的形式从而降低矩阵规模,在高阶谐波平衡法的基础上引入了速度型动态拉格朗日法,并通过提供解析形式的雅克比矩阵来提高计算效率与数值稳定性,从而构成了用于预测非线性系统强迫响应的算法。在一个集中参数模型上用切向/法向刚度法与时域推进法这两种主流非线性计算方法对本文算法的合理性进行了验证。利用该算法对带有波纹形阻尼器的薄壁板结构进行分析,结果表明,摩擦片对薄壁板有很好的振动抑制作用,在质量仅占主体结构0.6%的情况下,能够使共振峰值下降75.4%。该算法表现出较高的计算效率,减缩模型使用和解析雅克比矩阵的引入使CPU时间减小到原来的0.5%以下。

本文引用格式

马皓晔 , 李琳 , 范雨 , 吴亚光 . 基于加速动态拉格朗日法的摩擦片阻尼分析[J]. 航空学报, 2019 , 40(12) : 223283 -223283 . DOI: 10.7527/S1000-6893.2019.23283

Abstract

Dry friction patches with a corrugated shape is designed and analyzed using an accelerated numerical method for steady-state response of nonlinear structural systems. In order to reduce the scale of the DOFs, a double-reduction scheme is introduced and the nonlinear equations of motion is rewritten as a relative displacement form, The steady-state response is predicted by the multi-harmonic balance method combined with a velocity-based dynamic Lagrange method. The efficiency and stability of the algorithm are improved by the closed-form Jacobian matrix. The accuracy of this method is verified against the elastic frequency-time technique and the time-marching procedure based on a lumped parameter model. A good vibration attenuation of the dry friction damper on the thin-walled structures is observed by the simulation. The results show that with added mass equals to only 0.6% of the host structure, the resonant amplitude can be reduced by 75.4%. The computational efficiency can be improved significantly using the proposed method, where the CPU time can be reduced to less than 0.5% of the original approach.

参考文献

[1] 王建军, 李其汉. 航空发动机叶盘结构流体激励耦合振动[M]. 北京:国防工业出版社,2017. WANG J J, LI Q H. Fluid-induced coupled vibration of aeroengine blade disk structures[M]. Beijing:National Defense Industry Press, 2017(in Chinese).
[2] THOMAS O, DUCARNE J, DEÜ J F. Performance of piezoelectric shunts for vibration reduction[J]. Smart Materials and Structures, 2012, 21(1):15008.
[3] LI L, DENG P, FAN Y. Dynamic characteristics of a cyclic-periodic structure with a piezoelectric network[J]. Chinese Journal of Aeronautics, 2015, 28(5):1426-1437.
[4] LIU J Z, LI L, FAN Y. A comparison between the fric-tion and piezoelectric synchronized switch dampers for blisks[J]. Journal of Intelligent Material Systems and Structures, 2018, 29:2693-2705.
[5] 李琳, 马皓晔, 范雨,等. 用于叶片减振的压电材料分布拓扑优化[J]. 航空动力学报, 2019, 34(2):257-266. LI L, MA H Y, FAN Y, et al. Topological optimization of piezoelectric materials on the blades for vibration reduction of bladed disks[J]. Journal of Aerospace Power, 2019, 34(2):257-266(in Chinese).
[6] ALDO A F. Friction damping and isolation systems[J]. Journal of Mechanical Design, 1995, 117:196-206.
[7] YANG B D, MENQ C H. Characterization of contact kinematics and application to the design of wedge dampers in turbomachinery blading:Part 1-stick-slip contact kinematics[J]. Journal of Engineering for Gas Turbines and Power Transactions of The ASME, 1998, 120(2):410-417.
[8] SRINIVASAN A V, CUTTS D G. Dry friction damping mechanisms in engine blades[J]. Journal of Engineering for Power, 1983, 105(2):332-341.
[9] 李琳, 刘久周, 李超. 航空发动机中的干摩擦阻尼器及其设计技术研究进展[J]. 航空动力学报, 2016, 31(10):2305-2317. LI L, LIU J Z, LI C. Review of the dry friction dampers in aero-engine and their design technologies[J]. Journal of Aerospace Power, 2016, 31(10):2305-2317(in Chinese).
[10] 洪杰, 文敏, 马艳红,等. 凸肩径向位置对风扇叶片振动特性的影响[J]. 航空动力学报, 2015, 30(12):2817-2823. HONG J, WEN M, MA Y H, et al. Influence of the shroud's radial position on vibration characteristics of the fan blade[J]. Journal of Aerospace Power, 2015, 30(12):2817-2823(in Chinese).
[11] 刘继兴,张大义,王存,等. 带冠涡轮叶片振动特性的子区间组合分析方法[J]. 推进技术, 2017, 38(10):2323-2330. LIU J X, ZHANG D Y WANG C, et al. Sub-interval combination method for dynamical characteristics of shrouded turbine blades[J]. Journal of Propulsion Technology, 2017, 38(10):2323-2330(in Chinese).
[12] 史亚杰, 单颖春, 朱梓根. 带凸肩叶片非线性振动响应分析[J]. 航空动力学报, 2009, 24(5):1158-1165. SHI Y J, SHAN Y C, ZHU Z G. Analysis of nonlinear response of shrouded blades system[J]. Journal of Aerospace Power, 2009, 24(5):1158-1165(in Chinese).
[13] GRIFFIN J H. Friction damping of resonant stresses in gas turbine engine airfoils[J]. Journal of Engineering for Power, 2908, 102(2):329-333.
[14] 阳刚, 周标, 臧朝平,等. 缘板阻尼结构减振特性的影响因素分析[J]. 航空动力学报, 2019, 34(1):115-124. YANG G, ZHOU B, ZANG C P, et al. Analysis of the effect factors on damping characteristics for underplatform dampers[J]. Journal of Aerospace Power, 2019, 34(1):115-124(in Chinese).
[15] 李琳, 刘久周, 李超. 干摩擦阻尼器对宽频多阶次激励减振效果分析[J]. 航空动力学报, 2016, 31(9):2171-2180. LI L, LIU J Z, LI C. Analysis on damping effect of dry friction damper under wideband multi-harmonic excitation[J]. Journal of Aerospace Power, 2016, 31(9):2171-2180(in Chinese).
[16] 张大义, 杨诚, 夏颖,等. 带缘板阻尼结构转子叶片振动特性的影响参数分析[J].振动与冲击,2019, 38(10):221-227. ZHANG D Y, YANG C, XIA Y, et al. Influential parameters of rotating blades with under platform dampers[J]. Journal of Vibration and Shock, 2019, 38(10):221-227(in Chinese).
[17] FIRRONE C M, ZUCCA S. Passive control of vibration of thin-walled gears:Advanced modelling of ring dampers[J]. Nonlinear Dynamics, 2014, 76(1):263-280.
[18] ZENG L, LI L. The dynamic friction performance of damping-rings in labyrinth air seal for vibration control[C]//Proceeding of ASME Turbo Expo 2009. New York:ASME, 2009:1-12.
[19] 李琳, 范雨, 戴光昊. 二自由度扭转干摩擦系统的频域响应计算方法[J]. 航空动力学报, 2013, 28(4):850-857. LI L, FAN Y, DAI G H. Frequency domain solution of 2-DOF torsional dry friction system[J]. Journal of Aerospace Power, 2013, 28(4):850-857(in Chinese).
[20] 范雨, 戴光昊, 李琳.多界面干摩擦系统的减振特性及设计方法研究[J]. 工程力学, 2014, 31(3):237-246. FAN Y, DAI G H, LI L. On design and damping characteristics of multi-interface dry friction damper[J]. Engineering Mechanics, 2014, 31(3):237-246(in Chinese).
[21] 张大义, 张嵩, 付俭伟,等. 转子叶片缘板阻尼结构设计方法[J]. 航空动力学报, 2018, 33(4):961-968. ZHANG D Y, ZHANG S, FU J W, et al. Design method for the under platform damper of rotor blade[J]. Journal of Aerospace Power, 2018, 33(4):961-968(in Chinese).
[22] PETROV E P, EWINS D J. Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks[J]. Journal of Turbomachinery Transactions of the ASME, 2003, 125(2):364-371.
[23] PETROV E P, EWINS D J. Advanced modeling of underplatform friction dampers for analysis of bladed disk vibration[J]. Journal of Turbomachinery Transactions of the ASME, 2007, 129(1):143-150.
[24] CHARLEUX D, GIBERT C, THOUVEREZ F, et al. Numerical and experimental study of friction damping in blade attachments of rotating bladed disks[J]. International Journal of Rotating Machinery, 2006(1):1-13.
[25] CRAIG R R, BAMPTON M C. Coupling of substructures for dynamics analyses[J]. AIAA Journal,1968, 6(7), 1313-1319.
[26] LAXALDE D, THOUVEREZ F, LOMBARD J P. Forced response analysis of integrally bladed disks with friction ring dampers[J]. Journal of Vibration and Acoustics, 2010, 132(1):011013.1-011013.9.
[27] SIEWERT C, PANNING L, WALLASCHEK J, et al. Multiharmonic forced response analysis of a turbine blading coupled by nonlinear contact forces[J]. Journal of Engineering for Gas Turbines and Power Transactions of The ASME, 2010, 132(8):082501.
[28] KRACK M, SCHEIDT L P V, WALLASCHEK J. A method for nonlinear modal analysis and synthesis:Application to harmonically forced and self-excited mechanical systems[J]. Journal of Sound and Vibration, 2013, 332(25):6798-6814.
[29] JOANNIN C, THOUVEREZ F, CHOUVION B. Reduced-order modelling using nonlinear modes and triple nonlinear modal synthesis[J]. Computers & Structures, 2018, 203:18-33.
[30] WU Y G, LI L, FAN Y, et al. Design of semi-active dry friction dampers for steady-state vibration:Sensitivity analysis and experimental studies[J]. Journal of Sound and Vibration, 2019, 459:114850.
[31] BORRAJO J M, ZUCCA S, GOLA M, et al. Analytical formulation of the jacobian matrix for non-linear calculation of the forced response of turbine blade assemblies with wedge friction dampers[J]. International Journal of Non-linear Mechanics, 2006, 41(10):1118-1127.
[32] SCHWINGSHACKL C W, PETROV E P, EWINS D J. Effects of contact interface parameters on vibration of turbine bladed disks with underplatform dampers[J]. Journal of Engineering for Gas Turbine and Power, 2012, 134(3):032507.1-032507.8.
[33] HERZOG A, KRACK M, SCHEIDT L P V, et al. Comparison of two widely-used frequency-time domain contact models for the vibration simulation of shrouded turbine blades:GT2014-26226[R].New York:ASME, 2014.
[34] KRACK M, SALLES L, THOUVEREZ F. Vibration prediction of bladed disks coupled by friction joints[J]. Archives of Computational Methods in Engineering, 2017, 24(3):589-636.
[35] KAMMER D C, BAKER M. Comparison of the Craig-Bampton and residual flexibility methods of substructure representation[J]. Journal of Aircraft, 1987, 24(4):262-267.
[36] KAMMER D C, ALLEN M S, MAYES R L, et al. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator[J]. Journal of Sound and Vibration, 2015,359:179-194.
[37] TANG W, EPUREANU B I. Nonlinear dynamics of mistuned bladed disks with ring dampers[J]. International Journal of Non-Linear Mechanics, 2017, 97:30-40.
[38] TANG W, EPUREANU B I. Geometric optimization of dry friction ring dampers[J]. International Journal of Non-linear Mechanics, 2019, 109:40-49.
[39] WU Y G, FAN Y, LI L, et al. Sensitivity analysis and design of an open-loop active normal force for dry friction dampers[C]//ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York:ASME, 2017.
文章导航

/