Icing is an important environmental factor threatening flight safety. It is extremely important to study the safe flight envelope of aircraft in complex icing environment for flight envelope protection and improvement of flight safety. Taking Research Civil Aircraft Model (RCAM) as an example, the aircraft with high nonlinear system is decoupled into two subsystems based on the time scale separation principle, establishing the longitudinal motion model which considers the transverse motion of aircraft and the robust aerodynamic derivative model in a complex icing environment. Based on the optimal control theory of reachability, the backward reachable set is used as the safe flight envelope. Then, the effects of icing and rolling motion on the safe flight envelope are studied with reachability analysis. On the above basis, the robust safe flight envelope is further analyzed under uncertain icing conditions such as the icing position, icing type and distribution at different icing degrees. The results show that with the increase of icing degree, the safe flight envelope is narrowed. When considering the uncertainty factors, the robust safe flight envelope under mild icing case condition shrinks more significantly than that under severe icing condition. Therefore, even if the aircraft is mildly frozen, the flight risk is still large when considering the uncertainty factors, and the pilot should remain vigilant. The results can provide some reference for the flight envelope protection of the aircraft in complex icing environment.
[1] 屈亮,李颖晖,袁国强,等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报,2016, 37(3):865-872. QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):865-872(in Chinese).
[2] REEHORST A, COLANTONIO R O. Examination of icing induced loss of control and its mitigations[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2010.
[3] BRAGGE M B, BROEREN A P. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5):323-362.
[4] Safety Advisor Aircraft icing[EB/OL]. (2013-05-01)[2019-06-17]. http://www.aopa.org_media/Files/AOPA/Home/Pilot%20Resources/ASI/Safety%20Advisors/sall.pdf.
[5] LYNCH F T,KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(3):669-767.
[6] BRAGG M B, BASAR T. Smart icing systems for aircraft icing safety[C]//40th AIAA Aerospace Sciences Meeting Exhibit. Reston, VA:AIAA, 2002:14-17.
[7] 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京:航空专业教材编审组,1985. QIU X G, HAN F H. Aircraft anti-icing system[M]. Beijing:Aviation Professional Editors Publishing Group,1985(in Chinese).
[8] 王健名,徐浩军,薛源,等. 基于极值理论的平尾结冰飞行风险评估[J]. 航空学报,2016, 37(10):3011-3022. WANG J M, XU H J, XUE Y, et al. Flight risk evaluation of tailplane icing based on extreme value theory[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3011-3022(in Chinese).
[9] MERRET J M, HOSSAIN K N, BRAGG M B. Envelope protection and atmospheric disturbances in icing encounters:AIAA-2002-0814[R]. Reston, VA:AIAA, 2002.
[10] ZHANG Y, DE VISSER C C, CHU Q P. Online safe flight envelope prediction for damaged aircraft:a database-driven approach[C]//AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2016.
[11] ALEXANDRE M B, IAN M, MEEKO M K. Aircraft autolander safety analysis through optimal control-based reach set computation[J]. Journal of Guidance, Control and Dynamics, 2007, 30(1):68-77.
[11] MERRET J M, HOSSAIN K N, BRAGG M B. Envelope protection and atmospheric disturbances in icing encounters:AIAA-2002-0814[R]. Reston, VA:AIAA, 2002.
[12] 王爽,詹浩. 飞行最大可控边界集及其机动边界保护控制[J]. 西北工业大学学报,2014, 32(4):523-528. WANG S, ZHAN H. The safe-set aircraft and maneuver-ability envelope protection[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):523-528(in Chinese).
[13] 刘瑛,杜光勋,全权,等. 基于Hamilton-Jacobi方程的飞行器机动动作可达集分主析[J]. 自动化学报,2016, 42(3):347-357. LIU Y, DU G X, QUAN Q, et al. Reachability calculation for aircraft maneuver using Hamilton-Jacobi function[J]. Acta Automatica Sinica, 2016, 42(3):347-357(in Chinese).
[14] 武朋玮,李颖晖,郑无计,等. 基于可达集方法的结冰飞机着陆阶段安全风险评估[J]. 航空学报,2018, 39(12):122139. WU P W, LI Y H, ZHENG W J, et al. Flight risk evaluation based on reachable set method at the phase of icing aircraft landing[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122139(in Chinese).
[15] 周驰, 李颖晖, 郑无计, 等. 结冰飞机着陆阶段飞行安全包线确定及操纵应对策略研究[J]. 航空学报,2018, 39(12):122165. ZHOU C, LI Y H, ZHENG W J, et al. Study on flight safety envelope determination and maneuvering coping strategy for icing aircrafts during the landing phase[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122165(in Chinese).
[16] 唐超颖. 应用滑动模态和时间尺度分离的航天器姿态控制[J]. 武汉大学学报(工学版), 2007, 40(6):117-121. TANG C Y. Sliding mode control of spacecraft attitude based on time scale[J]. Engineering Journal of Wuhan University, 2007, 40(6):117-121(in Chinese).
[17] KITSIOS I, LYGEROS J. Launch pad abort flight envelope computation for a personnel launch vehicle using reachability[C]//AIAA Guidance, Control and Navigation Conference. Reston, VA:AIAA, 2005.
[18] LOOYE G, BENNANI S. Description and analysis of the Research Civil Aircraft Model(RCAM):Technical report TP-008-27[R]. Bedfordshire:GARTEUR, 1997.
[19] MITCHELL I. Application of level set methods to control and reachability problems in continuous and hybrid systems[D]. Stanford, CA:Stanford University, 2002.
[20] MITCHELL I, BAYEN A M, TOMLIN C J. Computing reachable sets for continuous dynamic games using level set methods[J]. IEEE Transactions on Automatic Control, 2005, 50(7):986-1001.
[21] LYGEROS J. On reachability and minimum cost optimal control[J]. Automatica, 2004, 40(6):917-927.
[22] 郑无计,李颖晖,屈亮,等. 基于正规形法的结冰飞机着陆阶段非线性稳定域[J]. 航空学报,2017, 38(2):567-588. ZHENG W J, LI Y H, QU L, et al. Nonlinear stability region of icing aircraft during landing phase based on normal form method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):567-588(in Chinese).