电子电气工程与控制

基于核主成分分析的空域复杂度无监督评估

  • 张瞩熹 ,
  • 朱熙 ,
  • 朱少川 ,
  • 张明远 ,
  • 杜文博
展开
  • 1. 北京航空航天大学 综合交通大数据应用技术国家工程实验室, 北京 100083;
    2. 中国人民解放军32751单位;
    3. 北京航空航天大学 前沿科学技术创新研究院, 北京 100083;
    4. 北京航空航天大学 交通科学与工程学院, 北京 100083;
    5. 北京航空航天大学 电子信息工程学院, 北京 100083

收稿日期: 2019-02-26

  修回日期: 2019-03-06

  网络出版日期: 2019-08-26

基金资助

国家杰出青年科学基金(61425014);国家优秀青年科学基金(61722102);国家自然科学基金(61671031)

Unsupervised evaluation of airspace complexity based on kernel principal component analysis

  • ZHANG Zhuxi ,
  • ZHU Xi ,
  • ZHU Shaochuan ,
  • ZHANG Mingyuan ,
  • DU Wenbo
Expand
  • 1. National Engineering Laboratory of Big Data Application Technologies of Comprehensive Transportation, Beihang University, Beijing 100083, China;
    2. Unit 32751 Force of PLA, China;
    3. Research Institute of Frontier Science, Beihang University, Beijing 100083, China;
    4. School of Transportation Science and Engineering, Beihang University, Beijing 100083, China;
    5. School of Electronic and Information Engineering, Beihang University, Beijing 100083, China

Received date: 2019-02-26

  Revised date: 2019-03-06

  Online published: 2019-08-26

Supported by

National Science Fund for Distinguished Young Scholars (61425014); National Science Foundation for Excellent Youth (61722102); National Natural Science Foundation of China (61671031)

摘要

空域复杂度评估作为衡量空域运行态势、管制员工作压力的关键手段,是运行调控的基础。由于影响因素众多,不同因素间耦合关联复杂,且标定样本很难获取,空域复杂度的准确评估被公认为航空领域的一个挑战性问题。提出了一种空域复杂度的无监督评估方法。首先通过核主成分分析挖掘原始样本各维度的非线性耦合关系,准确提取能够最大化复杂度评估信息量的主成分,进一步设计了可按需定制的主成分聚类方法,实现了无监督条件下空域复杂度的准确评估,为空域划分、流量管理提供了有效的技术支撑。

本文引用格式

张瞩熹 , 朱熙 , 朱少川 , 张明远 , 杜文博 . 基于核主成分分析的空域复杂度无监督评估[J]. 航空学报, 2019 , 40(8) : 322969 -322969 . DOI: 10.7527/S1000-3893.2019.22969

Abstract

Airspace complexity evaluation is a key means to measure the airspace operational situation and the controller workload, providing the basis for the operation optimization. Its accurate evaluation is a challenging problem in the aviation domain due to numerous influencing factors, the complex correlations between factors, and the high difficulty of collecting labelled samples. This paper proposes an unsupervised evaluation method for airspace complexity. Firstly, the kernel principal component analysis is utilized to mine the nonlinear correlations in different sample dimensions, and extract several principal components in which the airspace complexity information is maximized. Furthermore, the principal component clustering which can be customized according to user requirements is designed. The proposed method achieves accurate complexity evaluation capacity under the unsupervised condition, providing effective technical support for air traffic management like airspace configuration and traffic management.

参考文献

[1] 中国民用航空局运行监控中心. 2017年全国民航航班运行效率报告[R]. 北京:中国民用航空局, 2018. Operation Supervisory Center, Civil Aviation Administration of China. Operation efficiency report of civil aviation in China 2017[R]. Beijing:Civil Aviation Administratin of China, 2018(in Chinese).
[2] 中国民用航空局运行监控中心. 2016年全国民航航班运行效率报告[R]. 北京:中国民用航空局, 2017. Operation Supervisory Center, Civil Aviation Administration of China. Operation efficiency report of civil aviation in China 2016[R]. Beijing:Civil Aviation Administratin of China, 2017(in Chinese).
[3] 闫欣雨. 武汉机场塔台管制员睡着致航班复飞[N]. 新京报, 2014-08-20. YAN X Y. Wuhan airport tower controllers fell asleep, forcing an approaching flight to go around[N]. Beijing News, 2014-08-20(in Chinese).
[4] 腾讯新闻. 虹桥机场飞机险相撞和583人死亡的特内里费空难不能相提并论[EB/OL].(2016-10-18)[2019-02-26]. http://news.qq.com/a/20161018/024185.htm. Tencent News. Two flights almost crash together in Shanghai Hongqiao Airport, which is hardly comparable with Tenerife disaster[EB/OL].(2016-10-18)[2019-02-26]. http://news.qq.com/a/20161018/024185.htm (in Chinese).
[5] PRANDINI M, HU J H. A probabilistic approach to air traffic complexity evaluation[C]//Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Piscataway, NJ:IEEE Press, 2009.
[6] PRANDINI M, PUTTA V, HU J H. A probabilistic measure of air traffic complexity in three-dimensional airspace[J]. International Journal of Adaptive Control and Signal Processing, 2010, 24(10):813-829.
[7] PUECHMOREL S, DELAHAYE D. New trends in air traffic complexity[C]//Proceedings of the 2009 ENRI International Workshop on ATM/CNS, 2009.
[8] DELAHAYE D, PUECHMOREL S. Air traffic complexity based on dynamical systems[C]//Proceedings of the 49th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2010.
[9] 张进, 胡明华,张晨,等. 空域复杂性建模[J]. 南京:南京航空航天大学学报, 2010, 42(4):454-460. ZHANG J, HU M H, ZHANG C, et al. Airspace complexity modelling[J]. Nanjing:Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(4):454-460(in Chinese).
[10] KOPARDEKAR P. Dynamic density:A review of proposed variables[R]. Washington D.C.:FAA WJHTC Internal Document, 2000.
[11] KOPARDEKAR P, MAGYARITS S. Measurement and prediction of dynamic density[C]//Proceedings of the 5th USA/Europe ATM R&D Seminar. Piscataway,NJ:IEEE Press, 2003.
[12] GIANAZZA D, GUITTET K. Selection and evaluation of air traffic complexity metrics[C]//Proceedings of 25th Digital Avionics Systems Conference, 2006.
[13] GIANAZZA D. Forecasting workload and airspace configuration with neural networks and tree search methods[J]. Artificial Intelligence, 2010, 174:530-549.
[14] XIAO M M, ZHANG J, CAI K Q, et al. ATCEM:A synthetic model for evaluating air traffic complexity[J]. Journal of Advanced Transportation, 2016, 50(3):315-325.
[15] ZHU X, CAO X B, CAI K Q. Measuring air traffic complexity based on small samples[J]. Chinese Journal of Aeronautics, 2017, 30(4):1493-1505.
[16] CAO X B, ZHU X, TIAN Z C, et al. A knowledge-transfer-based learning framework for airspace operation complexity evaluation[J]. Transportation Research Part C:Emerging Technologies, 2018, 95:61-81.
[17] HOTELLING H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology, 1933, 24:417-441.
[18] LONG M, WANG J, DING G, et al. Transfer joint matching for unsupervised domain adaptation[C]//Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2014:1410-1417.
[19] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
[20] CAMPBELL C. Kernel methods:A survey of current techniques[J]. Neurocomputing, 2002, 48(1-4):63-84.
[21] CHATTERJI G B, SRIDHAR B. Measures for air traffic controller workload prediction[C]//Proceedings of the 1st AIAA Aircraft Technology, Integration and Operations Forum. Reston, VA:AIAA, 2001.
[22] DELAHAYE D, PUECHMOREL S. Air traffic complexity:Towards intrinsic metrics[C]//Proceedings of 3rd FAA/Eurocontrol Air Traffic Management R&D Seminar. Washington, D.C.:FAA, 2000.
[23] AVERTY P. Conflict perception by ATCS admits doubt but not inconsistency[C]//Proceedings of the 3rd USA/Europe Air Traffic Management R&D Seminar, 2000.
文章导航

/