流体力学与飞行力学

斜激波极值规律的边界层影响

  • 温浩 ,
  • 史爱明 ,
  • 鄢荣
展开
  • 西北工业大学 航空学院 NPU-Duke空气动力与气动弹性联合实验室, 西安 710072

收稿日期: 2019-06-06

  修回日期: 2019-07-03

  网络出版日期: 2019-10-11

基金资助

国家自然科学基金(10602046);民机项目(2018F8);西北工业大学研究生创意创新种子基金(ZZ2019048)

Boundary layer effects on rules of minimum oblique shock strength

  • WEN Hao ,
  • SHI Aiming ,
  • YAN Rong
Expand
  • NPU-Duke Topic Group for Aerodynamics and Aeroelasticity, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-06-06

  Revised date: 2019-07-03

  Online published: 2019-10-11

Supported by

National Natural Science Foundation of China (10602046); Project of CARP (2018F8); Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (ZZ2019048)

摘要

采用边界层理论与斜激波/膨胀波精确算法,建立一种结合Eckert参考温度法和Illingworth-Stewartson变换法优势的边界层权重算法,用于研究超声速黏性楔面边界层位移厚度对斜激波极值规律的影响。分别应用层流Navier-Stokes方程和湍流Navier-Stokes方程的CFD解算器对边界层新模型进行了算例精度评估。在来流马赫数为1.2~2.4和楔面角为3°~20°的范围内,压强比的相对误差小于0.1%。计入层流与湍流边界层影响的理论模型研究表明,边界层影响使得最优马赫数增加;对于层流边界层,最优马赫数增量约为0.001 5~0.003 3;对于湍流边界层,最优马赫数增量约为0.002 8~0.006 1。

本文引用格式

温浩 , 史爱明 , 鄢荣 . 斜激波极值规律的边界层影响[J]. 航空学报, 2019 , 40(12) : 123196 -123196 . DOI: 10.7527/S1000-6893.2019.23196

Abstract

By using the boundary layer theory and the shock/expansion wave exact solutions, a new weighted method to balance Eckert's reference temperature and Illingworth-Stewartson transformation is put forward to model boundary layer effects on the oblique shock structure of a supersonic wedge flow. The CFD solvers of laminar and turbulent Navier-Stokes equations are separately applied to evaluate the new model. The errors of pressure ratio between CFD and theoretical values are less than 0.1% at a range of Mach number 1.2-2.4 and wedge angle 3°-20°. The theoretical model is used to study rules of minimum oblique shock strength. Optimal Mach numbers for minimum strength of oblique shocks will slightly increase when considering boundary layer effects. The amounts of increase of optimal Mach numbers are 0.001 5-0.003 3 for laminar flow and 0.002 8-0.006 1 for turbulent flow.

参考文献

[1] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):121736. QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121736(in Chinese).
[2] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1):522759. CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522759(in Chinese).
[3] WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3):301-348.
[4] WHITHAM G B. On the propagation of weak shock waves[J]. Journal of Fluid Mechanics, 1956, 1(3):290-318.
[5] ANDERSON J D. Fundamentals of aerodynamics[M]. 6th ed. New York:McGraw-Hill, 2017:575-581.
[6] 史爱明, DOWELL E H. 斜激波总压损失率极小值理论解与物理意义[J]. 航空学报, 2018, 39(12):122517. SHI A M, DOWELL E H. Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122517(in Chinese).
[7] EMANUEL G. Analytical fluid dynamics[M]. 2nd ed. Boca Raton, FL:CRC Press, 2001:297-307.
[8] ELAICHI T, ZEBBICHE T. Stagnation temperature effect on the conical shock with application for air[J]. Chinese Journal of Aeronautics, 2018, 31(4):672-697.
[9] BLASIUS H. The boundary layers in fluids with little friction:NACA TM 1256[R]. Washington, D.C.:NACA, 1950.
[10] HOWARTH L. Concerning the effect of compressibility on laminar boundary layers and their separation[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 194:16-42.
[11] ILLINGWORTH C R. Steady flow in the laminar boundary layer of a gas[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1949, 199:533-558.
[12] STEWARTSON K. Correlated incompressible and compressible boundary layers[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1949, 200:84-100.
[13] RUBESIN M W, JOHNSON H A. A critical review of skin-friction and heat-transfer solutions of the laminar boundary layer of a flat plate[J]. Transaction of American Society of Mechanical Engineering, 1949, 71:383-388.
[14] ECKERT E R G, TEWFIK O E. Use of reference enthalpy in specifying the laminar heat-transfer distribution around blunt bodies in dissociated air[J]. Journal of the Aerospace Science, 1960, 27(6):464-466.
[15] MEADOR W E, SMART M K. Reference enthalpy method developed from solutions of the boundary layer equations[J]. AIAA Journal, 2005, 43(1):135-139.
[16] CEBECI T, COUSTEIX J. Modeling and computation of boundary-layer flows[M]. 2nd ed. Long Beach, CA:Horizon Publishing Inc., 2005:357-365.
[17] 龚安龙, 刘晓文, 刘周, 等. 高超声速壁面黏性力快速计算方法[J]. 空气动力学学报, 2017, 35(1):33-38. GONG A L, LIU X W, LIU Z, et al. A rapid method for hypersonic skin viscous force calculation[J]. Acta Aerodynamica Sinica, 2017, 35(1):33-38(in Chinese).
[18] FEGUSON F, CORBETT T, AKWABOA S, et al. The development of waveriders from an axisymmetric flowfield:AIAA-2007-0847[R]. Reston, VA:AIAA, 2007.
[19] SCHLICHTING H. Boundary-layer theory[M]. 7th ed. New York:McGraw-Hill, 1979:635-640.
[20] PALACIOS F, COLONNO M R, ARANAKE A C, et al. Stanford University Unstructured (SU2):An open-source integrated computational environment for multi-physics simulation and design:AIAA-2013-0287[R]. Reston, VA:AIAA, 2013.
[21] VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[22] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese).
[23] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady solution:AIAA-1993-0880[R]. Reston, VA:AIAA, 1993.
[24] TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1):25-34.
[25] CHEN F, LIU H, YANG Z F, et al. Tracking characteristics of tracer particles for PIV measurements in supersonic flows[J]. Chinese Journal of Aeronautics, 2017, 30(2):577-585.
[26] LEE C B, WANG S. Study of the shock motion in a hypersonic shock system turbulent boundary-layer interaction[J]. Experiments in Fluids, 1995, 19(3):143-149.
[27] 童福林, 李新亮, 段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报, 2017, 38(12):121376. TONG F L, LI X L, DUAN Y H. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121376(in Chinese).
[28] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers and Fluids, 2017, 149:56-69.
[29] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction[J]. Experiments in Fluids, 2015, 56:113.
[30] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. A parametric study of laminar and transitional oblique shock wave reflections[J]. Journal of Fluid Mechanics, 2018, 844:187-215.
文章导航

/