采用边界层理论与斜激波/膨胀波精确算法,建立一种结合Eckert参考温度法和Illingworth-Stewartson变换法优势的边界层权重算法,用于研究超声速黏性楔面边界层位移厚度对斜激波极值规律的影响。分别应用层流Navier-Stokes方程和湍流Navier-Stokes方程的CFD解算器对边界层新模型进行了算例精度评估。在来流马赫数为1.2~2.4和楔面角为3°~20°的范围内,压强比的相对误差小于0.1%。计入层流与湍流边界层影响的理论模型研究表明,边界层影响使得最优马赫数增加;对于层流边界层,最优马赫数增量约为0.001 5~0.003 3;对于湍流边界层,最优马赫数增量约为0.002 8~0.006 1。
[1] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):121736. QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121736(in Chinese).
[2] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1):522759. CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522759(in Chinese).
[3] WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3):301-348.
[4] WHITHAM G B. On the propagation of weak shock waves[J]. Journal of Fluid Mechanics, 1956, 1(3):290-318.
[5] ANDERSON J D. Fundamentals of aerodynamics[M]. 6th ed. New York:McGraw-Hill, 2017:575-581.
[6] 史爱明, DOWELL E H. 斜激波总压损失率极小值理论解与物理意义[J]. 航空学报, 2018, 39(12):122517. SHI A M, DOWELL E H. Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122517(in Chinese).
[7] EMANUEL G. Analytical fluid dynamics[M]. 2nd ed. Boca Raton, FL:CRC Press, 2001:297-307.
[8] ELAICHI T, ZEBBICHE T. Stagnation temperature effect on the conical shock with application for air[J]. Chinese Journal of Aeronautics, 2018, 31(4):672-697.
[9] BLASIUS H. The boundary layers in fluids with little friction:NACA TM 1256[R]. Washington, D.C.:NACA, 1950.
[10] HOWARTH L. Concerning the effect of compressibility on laminar boundary layers and their separation[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 194:16-42.
[11] ILLINGWORTH C R. Steady flow in the laminar boundary layer of a gas[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1949, 199:533-558.
[12] STEWARTSON K. Correlated incompressible and compressible boundary layers[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1949, 200:84-100.
[13] RUBESIN M W, JOHNSON H A. A critical review of skin-friction and heat-transfer solutions of the laminar boundary layer of a flat plate[J]. Transaction of American Society of Mechanical Engineering, 1949, 71:383-388.
[14] ECKERT E R G, TEWFIK O E. Use of reference enthalpy in specifying the laminar heat-transfer distribution around blunt bodies in dissociated air[J]. Journal of the Aerospace Science, 1960, 27(6):464-466.
[15] MEADOR W E, SMART M K. Reference enthalpy method developed from solutions of the boundary layer equations[J]. AIAA Journal, 2005, 43(1):135-139.
[16] CEBECI T, COUSTEIX J. Modeling and computation of boundary-layer flows[M]. 2nd ed. Long Beach, CA:Horizon Publishing Inc., 2005:357-365.
[17] 龚安龙, 刘晓文, 刘周, 等. 高超声速壁面黏性力快速计算方法[J]. 空气动力学学报, 2017, 35(1):33-38. GONG A L, LIU X W, LIU Z, et al. A rapid method for hypersonic skin viscous force calculation[J]. Acta Aerodynamica Sinica, 2017, 35(1):33-38(in Chinese).
[18] FEGUSON F, CORBETT T, AKWABOA S, et al. The development of waveriders from an axisymmetric flowfield:AIAA-2007-0847[R]. Reston, VA:AIAA, 2007.
[19] SCHLICHTING H. Boundary-layer theory[M]. 7th ed. New York:McGraw-Hill, 1979:635-640.
[20] PALACIOS F, COLONNO M R, ARANAKE A C, et al. Stanford University Unstructured (SU2):An open-source integrated computational environment for multi-physics simulation and design:AIAA-2013-0287[R]. Reston, VA:AIAA, 2013.
[21] VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[22] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese).
[23] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady solution:AIAA-1993-0880[R]. Reston, VA:AIAA, 1993.
[24] TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1):25-34.
[25] CHEN F, LIU H, YANG Z F, et al. Tracking characteristics of tracer particles for PIV measurements in supersonic flows[J]. Chinese Journal of Aeronautics, 2017, 30(2):577-585.
[26] LEE C B, WANG S. Study of the shock motion in a hypersonic shock system turbulent boundary-layer interaction[J]. Experiments in Fluids, 1995, 19(3):143-149.
[27] 童福林, 李新亮, 段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报, 2017, 38(12):121376. TONG F L, LI X L, DUAN Y H. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121376(in Chinese).
[28] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers and Fluids, 2017, 149:56-69.
[29] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction[J]. Experiments in Fluids, 2015, 56:113.
[30] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. A parametric study of laminar and transitional oblique shock wave reflections[J]. Journal of Fluid Mechanics, 2018, 844:187-215.