固体力学与飞行器总体设计

基于改进准则法的复合壳阻尼结构拓扑减振动力学优化

  • 袁维东 ,
  • 高瞻 ,
  • 刘浩康 ,
  • 缪国峰
展开
  • 航空工业南京机电液压工程研究中心 航空机电系统综合航空科技重点实验室, 南京 211106

收稿日期: 2019-05-15

  修回日期: 2019-06-20

  网络出版日期: 2019-10-11

Topology optimization of composite shell damping structures based on improved optimal criteria method

  • YUAN Weidong ,
  • GAO Zhan ,
  • LIU Haokang ,
  • MIU Guofeng
Expand
  • Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, AVIC Nanjing Engineering Institute of Aircraft Systems, Nanjing 211106, China

Received date: 2019-05-15

  Revised date: 2019-06-20

  Online published: 2019-10-11

摘要

针对复合壳阻尼结构的拓扑减振优化问题,以约束阻尼层的有限单元为设计变量,采用体积比、模态频率和振型为优化约束条件,构建以多模态权重系数的结构模态损耗因子数值关系为优化目标函数的拓扑减振优化模型。为了拓展优化目标灵敏度具有不局限于某一变密度法插值模型的形式,推导了数值表达式的一般函数式。动力学优化中优化目标灵敏度正、负数集共存,使得非凸性的目标函数设计变量出现负值或优化函数寻优于局部极值点。为此,推导出复合壳阻尼结构的全域灵敏度改进优化准则法迭代格,以确保每次迭代域均为全域设计变量集。结合有限单元法编程实现了复合壳阻尼结构改进准则法,并对复合壳结构进行拓扑减振优化分析。结果表明:在敷设体积减为全覆盖的50%时,复合壳结构的模态损耗因子增减偏差为10%,具有提升减振的轻量化设计目的;各阶目标函数和拓扑构型所需的迭代次数少,中间密度区域较小,多阶优于单阶模态优化函数,易于获得全域寻优的有效减振。

本文引用格式

袁维东 , 高瞻 , 刘浩康 , 缪国峰 . 基于改进准则法的复合壳阻尼结构拓扑减振动力学优化[J]. 航空学报, 2020 , 41(1) : 223162 -223162 . DOI: 10.7527/S1000-6893.2019.23162

Abstract

Aiming at the damped composite shell structure in topology vibration reduction optimization, a topology vibration reduction optimization model is constructed by taking the finite element of the damped layer as the design variable and the volume ratio, modal frequency and mode shape as the optimization constraintshe model of the structure modal loss factor is designed with the multi-modal weight coefficient as the optimization objective function. The form of the interpolation model limit to a variable density method, the general function of the sensitivity of the optimized objective is derived. Due to existence of the positive and negative sets of this sensitivity, the design variables of the non-convex objective function has negative values or optimal solution of this optimization function is the local extremum. With the improved global sensitivity optimization criterion, the iteration method for composite shell damping structures is derived, ensur that each iteration is a set of global design variables. Based on the finite element method, the improved criterion programming is written, and the optimal analysis of topological vibration reduction is carried out on the damped composite shell structure. The results indicate that hen the volume of constrained damping layer is reduced to 50% of the total coverage, the mode loss factor of the shell structure is increased or decreased by 10%, which has the purpose of lightweight design to improve the vibration reduction The number of iterations required by each order objective function and topology configuration is small, the middle density area is smaller, and the multi-order is better than the single-order modal optimization function, which is easy to obtain the effective vibration reduction of global optimization.

参考文献

[1] 黄志诚, 秦朝烨, 褚福磊. 附加黏弹阻尼层的薄壁构件振动问题研究综述[J]. 振动与冲击, 2014,33(7):105-113. HUANG Z C, QIN Z Y, CHU F L. A review about vibration problems of thin-walled structures with viscoelastic damping layer[J]. Journal of Vibration and Shock, 2014, 33(7):105-113(in Chinese).
[2] KERWI N, EDWARD M. Damping of flexural waves by a constrained viscoelastic layer[J]. The Journal of the Acoustical Society of America, 1959, 31(7):952-962.
[3] BIENIEK M P, FREUDENTHAL A M. Forced vibrations of cylindrical sandwich shells[J]. Journal of the Aerospace Sciences, 1962, 29:180-184.
[4] 王目凯, 陈照波, 焦映厚, 等. 敷设约束阻尼薄壁圆柱壳的振动特性[J]. 哈尔滨工业大学学报, 2017, 49(1):72-79. WANG M K, CHEN Z B, JIAO Y H, et al. Vibration characteristics of thin cylindrical shell with constrained layer damping[J]. Journal of Harbin Institute of Technology, 2017, 49(1):72-79(in Chinese).
[5] PEDERSEN N L. Maximization of eigenvalues using topology optimization[J]. Structural and Multidiscip-linary Optimization, 2000, 20(1):2-11.
[6] 杨德庆, 柳拥军. 自由阻尼层结构阻尼材料配置优化的拓扑敏度法[J]. 振动工程学报, 2003(4):32-37. YANG D Q, LIU Y J. Topological sensitivity method for the optimal placement of unconstrained damping material in structures[J]. Journal of Vibration Engineering, 2003(4):32-37(in Chinese).
[7] LIMA A M G, STOPPA M H, RADE D A, et al. Sensitivity analysis of viscoelastic structures[J]. Journal of Vibration and Shock, 2016,13:545-558.
[8] 郭中泽, 陈裕泽. 基于准则法的阻尼结构拓扑优化[J]. 宇航学报, 2009, 30(6):2387-2391. GUO Z Z, CHEN Y Z. Topology optimization of the damping structure with optimal criteria[J]. Journal of Astronautics, 2009, 30(6):2387-2391(in Chinese).
[9] KUMAR N, SINGH S P. Experimental study on vibration and damping of curved panel treated with constrained viscoelastic layer[J]. Composite Structures, 2010, 92(2):233-243.
[10] KUMAR N, SINGH S P. Vibration control of curved panel using smart damping[J]. Mechanical Systems and Signal Processing, 2012, 30:232-247.
[11] 王明旭, 陈国平. 基于均匀化方法的约束阻尼柱壳结构动力学性能优化[J]. 中国机械工程, 2011, 22(8):892-897. WANG M X, CHEN G P. Dynamics performance optimization of cylindrical shell with constrained damping layer using homogenization approach[J]. China Mechanical Engineering, 2011, 22(8):892-897(in Chinese).
[12] 柳承峰, 李以农, 郑玲, 等. 约束层阻尼短圆柱壳拓扑优化分析及实验研究[J]. 振动与冲击, 2013, 32(18):49-53, 58. LIU C F, LI Y N, ZHENG L, et al. Topology optimization and tests for a short cylindrical shell with constrained layer damping[J]. Journal of Vibration and Shock, 2013, 32(18):49-53, 58(in Chinese).
[13] 石慧荣, 高溥, 李宗刚, 等. 局部约束阻尼柱壳振动分析及优化设计[J]. 振动与冲击, 2013, 32(22):146-151, 173. SHI H R, GAO P, LI Z G, et al. Vibration analysis and optimization design of a cylindrical shell treated with constrained layer damping[J]. Journal of Vibration and Shock, 2013, 32(22):146-151, 173(in Chinese).
[14] KIM S Y, MECHEFSKE C K, KIM I Y. Optimal damping layout in a shell structure using topology optimization[J]. Journal of Sound and Vibration, 2013, 332(12):2873-2883.
[15] JOHNSON C D, KIENHOLZ D A. Finite element prediction of damping in structures with constrained viscoelastic layers[J]. AIAA Journal, 1982, 20(9):1284-1290.
[16] MA Z D, WANG H, KIKUCHI N, et al. Experimental validation and prototyping of optimum designs obtained from topology optimization[J]. Structural and Multidisciplinary Optimization, 2006, 31(5):333-343.
[17] ZARGHAM S, WARD T A, RAMLI R, et al. Topology optimization:A review for structural designs under vibration problems[J]. Structural and Multidisciplinary Optimization, 2016, 53(6):1157-1177.
[18] 郑长升, 梁森, 陈静, 等. 低温共固化高阻尼复合材料[J]. 航空学报, 2019, 40(8):422721. ZHENG C S, LIANG S, CHENG J. Low-temperature co-cured high damping composites[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):422721(in Chinese).
[19] ZHANG W, WANG F, DAI G, et al. Topology optimal design of material microstructures using strain energy-based method[J]. Chinese Journal of Aeronautics, 2007, 20(4):320-326.
[20] 俞燎宏, 荣见华, 唐承铁, 等. 基于可行域调整的多相材料结构拓扑优化设计[J]. 航空学报, 2018, 39(9):222023. YU L H, RONG J H, TANG C T, et al. Multi-phase material struclural topology optimization design based on feasible domain adjustment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):222023(in Chinese).
[21] 朱继宏, 赵华, 刘涛, 等. 简谐力激励下多组件结构系统的整体优化设计[J]. 航空学报, 2018, 39(1):221575. ZHU J H, ZHAO H, LIU T, et al. Integrated layout and topology optimization design of multi-component structure system under harmonic force excitation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):221575(in Chinese).
[22] MA Z D, KIKUCHI N, HAGIWARA I. Structural topology and shape optimization for a frequency response problem[J]. Computational Mechanics, 1993, 13(3):157-174.
[23] LIU T, LI B, WANG S, et al. Eigenvalue topology optimization of structures using a parameterized level set method[J]. Structural and Multidisciplinary Optimization, 2014, 50(4):573-591.
文章导航

/