针对某舰载无人机拦阻着舰过程中的机体强度问题,以其中机身结构为主要研究对象,首次设计了包括中机身结构与前后机身、机翼假件以及拦阻钩等构件的地面拦阻模拟试验方案,并搭建了相应装置,采用地面试验和刚柔耦合仿真模拟2种方法,对拦阻着舰过程中拦阻力冲击下中机身结构的动态响应特性进行了全面分析。试验与仿真结果表明:中机身最大航向过载沿两条主传力路径自后机身到前机身方向衰减,下传递路径点的过载峰值明显大于上传递路径点的峰值;发现最大过载点位于拦阻接头处,应变危险点位于机腹梁前段处;中机身结构上各测点的试验和仿真过载误差均在5%以内,应变误差均在8%以内,验证了试验结果的有效性和刚柔耦合数值仿真方法的可行性。地面拦阻试验及数值仿真的联合分析可为舰载无人机机身结构强度设计提供重要参考,并为后续舰载无人机的拦阻着舰分析以及机身结构响应预测提供依据。
This paper aims at the airframe strength problem of a carrier-based UAV in the process of arresting and landing. With the fuselage structure as the main research object, a ground hindered simulation test plan is designed, including the fuselage structure, the fuselage and wings before and after false, and hindered hook component. The corresponding device is set up. Adopting the ground test and the coupled simulation, the dynamic response of the ship block resistance under the impact of the fuselage structure is analyzed. The test and simulation results show that the maximum longitudinal overload of the middle fuselage attenuates along the two main transmission paths from the rear fuselage to the front fuselage, and the peak load of the lower transmission path point is significantly higher than that of the upper transmission path point. It is found that the maximum overload point is at the arresting joint and the strain danger point is at the front section of the belly beam. The overload error of test and simulation at each measuring point on the medium fuselage structure is within 5% and the strain error is within 8%, which verify the validity of test results and the feasibility of the rigid-flexible coupling numerical simulation method. The joint analysis of ground arresting test and numerical simulation can provide important reference for the design of structural strength of carrier-based UAV, and provide basis for the subsequent analysis of arresting landing of carrier-based UAV and prediction of fuselage structural response.
[1] 杨一栋.舰载机进场着舰规范评估[M].北京:国防工业出版社, 2006. YANG Y D. Shipboard aircraft approaching ship specification evaluation[M]. Beijing:National Defense Industry Press, 2006(in Chinese).
[2] GIBSON P T, CRESS H A. Analytical study of aircraft arresting gear cable design:AD617788[R]. Columbus, Ohio:Battelle Memorial Institute, 1965.
[3] BILLEC W. The effect of deck span upon arresting-gear performance:AD-813761[R]. New Jersey:US Naval Air Test Facility, 1967.
[4] HSIN C. Arrested landing studies for STOL aircraft:A73-17627(AH)[R]. Reston, VA:AIAA, 1973.
[5] LYLE W J. Development of curves for estimating aircraft arresting hook loads:AD-A119551[R]. California:Air Force Flight Test Center, 1982.
[6] MONTGOMERY R, GRANDA J. Automated modeling and simulation using the bond graph method for the aerospace industry[R]. Washington,D.C.:NASA, 2003.
[7] PAYNTER H M. Analysis and design of engineering systems[M]. Cambridge:MIT Press, 1961.
[8] 宋锦春, 张志伟. 飞机拦阻器的液压系统与性能仿真[J]. 东北大学学报(自然科学版), 2002, 23(10):992-995. SONG J C, ZHANG Z W. Hydraulic system design and performance simulation of aircraft arresting system[J]. Journal of Northeastern University (Natural Science), 2002, 23(10):992-995(in Chinese).
[9] 王钱生. 关于舰载机着舰下沉速度的初步研究[J]. 飞机设计, 2007, 27(3):1-6. WANG Q S. Preliminary study on the sinking speed of shipboard aircraft[J]. Aircraft Design, 2007, 27(3):1-6(in Chinese).
[10] 吴娟, 符芳涌, 肖勇. 重型飞机拦阻系统的仿真分析[J]. 系统仿真学报, 2009, 21(20):6643-6646. WU J, FU F Y, XIAO Y. Simulation analysis of heavy aircraft arresting system[J]. Journal of System Simulation, 2009, 21(20):6643-6646(in Chinese).
[11] 李启明, 冯蕴雯, 于立明. 飞机拦阻着陆动力学分析与仿真[J]. 计算机仿真, 2010, 27(1):27-31. LI Q M, FENG Y W, YU L M. Analysis and simulation of aircraft arresting landing dynamics[J]. Computer Simulation, 2010, 27(1):27-31(in Chinese).
[12] 万晨. 舰载机拦阻装置刚柔耦合系统建模及动态特性研究[D]. 哈尔滨:哈尔滨工程大学, 2013. WAN C. Modeling and dynamic characteristics of rigid-flexible coupling system of carrier-based arresting device[D]. Harbin:Harbin Engineering University, 2013(in Chinese).
[13] 杨全伟.舰载飞机拦阻钩载荷实测方法研究[J].航空学报,2015,36(4):1162-1168. YANG Q W. Study on the method of measuring the load of anchored hook on shipborne aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1162-1168(in Chinese).
[14] 沈文厚, 赵治华, 任革学, 等. 拦阻索冲击的多体动力学仿真研究[J]. 振动与冲击, 2015, 34(5):73-77. SHEN W H, ZHAO Z H, REN G X, et al. Multibody dynamics simulation of damping cable impact[J]. Journal of Vibration and Shock, 2015, 34(5):73-77(in Chinese).
[15] 刘成玉, 王斌团. 舰载机-拦阻器耦合系统动力学建模与仿真分析[J]. 南京航空航天大学学报, 2016, 48(3):418-425. LIU C Y, WANG B T. Dynamic modeling and simulation analysis of carrier-barrier coupling system[J]. Journal of Nanjing University of Aeronautica and Astronautica, 2016, 48(3):418-425(in Chinese).
[16] 何敏, 朱小龙, 刘晓明,等. 舰载机前机身结构地面弹射冲击响应[J]. 航空学报, 2018, 39(5):221711. HE M, ZHU X L, LIU X M, et al. Impact response of ground ejection of front fuselage structure of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):221711(in Chinese).
[17] 闵强, 王斌团, 王亚芳, 等. 舰载机拦阻着舰载荷谱编制技术研究[J]. 航空学报, 2019, 40(9):222284. MIN Q, WANG B T, WANG Y F, et al. Study on the technology of shipboard jamming load spectrum compiling[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):222284(in Chinese).
[18] 夏益霖, 吴家驹. 航天发射的低频振动环境及其模拟[J]. 强度与环境, 1998,25(1):1-8. XIA Y L,WU J J. Low-frequency vibration environment and its simulation for aerospace lauch[J].Structure & Environment Engineering,1998,25(1):1-8(in Chinese).
[19] CARUSO H. MIL-STD-810F, Environmental engineering considerations and laboratory tests[J]. Journal of IEST, 2001, 44(3):30-34.
[20] 陈峰华.ADAMS 2016虚拟样机技术从入门到精通[M].北京:清华大学出版社, 2017. CHEN F H. ADAMS 2016 Virtual prototype technology from getting started to proficient[M]. Beijing:Tsinghua University Press, 2017(in Chinese).
[21] 旷刚. 飞机适坠性与滑跑响应研究[D]. 广州:华南理工大学, 2014:8-19. KUANG G. The research on crashworthiness simulation and taxiing-induced dynamics response of the aircraft[D].Guangzhou:South China University of Technology, 2014:8-19(in Chinese).
[22] 黎伟明, 马晓利. 舰载机多体动力学建模与弹射起飞模拟[J]. 机械科学与技术, 2016, 35(11):1797-1804. LI W M, MA X L. Multi-body dynamics modeling and catapult-launching simulation for carrier-based aircraft[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(11):1797-1804(in Chinses).