流体力学与飞行力学

变热线过热比可压缩流湍流度测量方法优化

  • 杜钰锋 ,
  • 林俊 ,
  • 王勋年 ,
  • 熊能
展开
  • 1. 中国空气动力研究与发展中心 高速空气动力研究所, 绵阳 621000;
    2. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000

收稿日期: 2019-04-09

  修回日期: 2019-06-06

  网络出版日期: 2019-10-11

Measurement technique optimization of turbulence level in compressible fluid by changing overheat ratio of hot wire anemometer

  • DU Yufeng ,
  • LIN Jun ,
  • WANG Xunnian ,
  • XIONG Neng
Expand
  • 1. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-04-09

  Revised date: 2019-06-06

  Online published: 2019-10-11

摘要

开展了可压缩流中湍流度测量技术的优化研究,以满足对试验数据高精度评估的需求。在变热线过热比湍流度测量方法推导过程中,忽略了压力脉动项以简化湍流度求解过程。为更加准确评估高速风洞流场湍流度,引入了压力脉动项,以恒温热线风速仪响应关系式为基础,从理论上对可压缩流中湍流度的求解方法进行了优化。在马赫数0.3~0.7进行了湍流度测量试验,并分别利用优化前后的湍流度求解方法对试验数据进行了处理。结果表明两种求解方法所得的湍流度结果量值相近,但优化后的湍流度求解方法所得的湍流度结果随马赫数的变化趋势更加符合客观物理规律。利用蒙特卡洛模拟方法对湍流度的不确定度进行了求解,不确定度量值远小于湍流度量值,表明优化后的湍流度求解方法所得的湍流度结果基本能够代表真实值。试验结果证明了优化后湍流度测量方法的正确性及应用恒温热线风速仪对高速风洞流场湍流度进行测量的可行性。

本文引用格式

杜钰锋 , 林俊 , 王勋年 , 熊能 . 变热线过热比可压缩流湍流度测量方法优化[J]. 航空学报, 2019 , 40(12) : 123067 -123067 . DOI: 10.7527/S1000-6893.2019.23067

Abstract

In order to increase the measurement precision of a compressible flow, an optimization of turbulence level measurement technique is studied. By changing the overheat ratio of hot-wire anemometer and neglecting the pressure fluctuation terms in the governing equations, the turbulence level is solved. In order to evaluate the turbulence level in high speed flow more precisely, the algorithm for turbulence level based on response function of constant temperature hot-wire anemometer in compressible fluid is theoretically optimized by introducing pressure fluctuation. Turbulence level measurement experiments are carried out with the Mach number varied from 0.3 to 0.7 and the experimental data is processed by using algorithm of turbulence level before and after optimization. The results indicate that the magnitudes of turbulence level from the two methods are similar, but the variation tendency of turbulence level with Mach number obtained by using the optimized method is in accordance with the objective physical law. The uncertainty of turbulence level is obtained using Monte Carlo simulation, and the magnitude of the uncertainty is much smaller than that of the turbulence level. The results suggest that the turbulence level obtained using the optimized method could be regarded as the true values. The results proved the correctness of the turbulence level measurement technique after optimization and the feasibility of application of constant temperature hot-wire anemometer into turbulence level measurement in high speed wind tunnels.

参考文献

[1] 恽起麟. 实验空气动力学[M]. 北京:国防工业出版社, 1991:173-177. YUN Q L. Experimental aerodynamics[M]. Beijing:National Defense Industry Press, 1991:173-177(in Chinese).
[2] JONES R A. An experimental study at a Mach number of 3 of the effect of turbulence level and sandpaper type roughness on transition on a flat plate:NASA-MEMO-2-2-59L[R]. Washington, D. C.:NASA, 1959.
[3] 卞于中, 唐敏中, 何克敏, 等. 湍流度和雷诺数对附面层转握位置的影响[J]. 流体力学实验与测量, 1997, 11(1):25-29. BIAN Y Z, TANG M Z, HE K M, et al. Effect of turbulivity and Reynolds number on boundary layer transition position[J]. Experiments and Measurements in Fluid Mechanics, 1997, 11(1):25-29(in Chinese).
[4] 何克敏, 白存儒, 郭渠渝, 等. 较低湍流度范围湍流度对风洞试验结果的影响[J]. 流体力学实验与测量, 1997, 11(3):11-17. HE K M, BAI C R, GUO Q Y, et al. The effect of turbulence on wind tunnel results in the range of low turbulence[J]. Experiments and Measurements in Fluid Mechanics, 1997, 11(3):11-17(in Chinese).
[5] 白存儒, 何克敏, 郭渠渝, 等. 变湍流度时翼型边界层及近场尾流的法向湍流特性初步试验研究[J]. 流体力学实验与测量, 1998, 12(4):31-35. BAI C R, HE K M, GUO Q Y, et al. Experimental investigation of normal turbulence characteristics of boundary layer and near wake of an airfoil at different turbulence level[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):31-35(in Chinese).
[6] 张骞, 陈连忠, 艾邦成. 电弧加热流场湍流度对尖锥边界层转捩影响的研究[J]. 实验流体力学, 2010, 24(6):57-60. ZHANG Q, CHEN L Z, AI B C. Sharp cone boundary layer transition research in arc heated flow field influenced by turbulence[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6):57-60(in Chinese).
[7] LIU J, KAILASANATH K, BORIS J P, et al. Effect of initial turbulence level on an underexpanded supersonic jet[J]. AIAA Journal, 2013, 51(3):741-744.
[8] 白存儒, 屠兴, 郭渠渝, 等. 湍流度对翼身组合体大攻角气动特性的影响研究[J]. 流体力学实验与测量, 1999, 13(3):25-31. BAI C R, TU X, GUO Q Y, et al. The research of effect of flow turbulence on the aerodynamic characteristics of a wing-body combination at high angles of attack[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(3):25-31(in Chinese).
[9] 李峰, 白存儒, 郭伟, 等. 湍流度对飞行器模型大迎角气动特性影响的初步研究[J]. 实验流体力学, 2006, 20(3):45-52. LI F, BAI C R, GUO W, et al. Primal research of the effect of flow turbulence on aerodynamic characteristics of a aircraft model at high angles of attack[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3):45-52(in Chinese).
[10] 阎东, 吕中宾, 林巍, 等. 湍流度对覆冰导线气动力特性影响的试验研究[J]. 高压电技术, 2014, 40(2):450-457. YAN D, LV Z B, LIN W, et al. Experimental study on effect of turbulence intensity on the aerodynamic characteristics of iced conductors[J]. High Voltage Engineering, 2014, 40(2):450-457(in Chinese).
[11] DRYDEN H L, KUETHE A M. The measurement of fluctuations of air speed by the hot-wire anemometer:NACA-REPORT-320[R]. Washington, D.C.:National Advisory Committee for Aeronautics, 1930.
[12] DRYDEN H L, KUETHE A M. Effect of turbulence in wind tunnel measurements:NACA-REPORT-342[R]. Washington, D.C.:National Advisory Committee for Aeronautics, 1931.
[13] DRYDEN H L, SCHUBAUER G B, MOCK W C, et al. Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres:NACA-REPORT-581[R]. Washington, D.C.:National Advisory Committee for Aeronautics, 1937.
[14] KING V L. On the convection of heat from small cylinders in a stream of fluid:Determination of the convection constants of small platinum wires with application to hot-wire anemometry[J]. Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Science, 1914, 214:373-432.
[15] DEMIN V S, MORIN O V, POLYAKOV N F, et al. Measurement of low turbulence levels with a thermoanemometer:NASA-TM-75282[R]. Washington, D. C.:National Advisory Committee for Aeronautics, 1978.
[16] 朱博, 汤更生. 声学风洞流场低湍流度及频谱测量研究[J]. 实验流体力学, 2015, 29(4):58-64. ZHU B, TANG G S. Low turbulence intensity and spectrum measurement research in aeroacoustic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):58-64(in Chinese).
[17] STAINBACK P C, JOHNSON C B. Preliminary measurements of velocity, density and total temperature fluctuations in compressible subsonic flow:AIAA-1983-0384[R]. Reston, VA:AIAA, 1983.
[18] HORSTMAN C C, ROSE W C. Hot-wire anemometry in transonic flow:NASA-TM-X-62495[R]. Washington, D.C.:National Aeronautics and Space Administration, 1976.
[19] JONES G S, STAINBACK P C, HARRIES C D, et al. Flow quality measurements for the Langley 8-foot transonic pressure tunnel LFC experiment:AIAA-1989-0150[R]. Reston, VA:AIAA, 1989.
[20] JONES G S, STAINBACK P C, NAGABUSHANA K A. A comparison of calibration techniques for hot-wires operated in subsonic compressible slip flows:AIAA-1992-4007[R]. Reston, VA:AIAA, 1992.
[21] LAU J C, MORRIS P J, FISHER M J. Turbulence measurements in subsonic and supersonic jets using a laser velocimeter:AIAA-1976-348[R]. Reston, VA:AIAA, 1976.
[22] SEASHOLTZ R G, PANDA J, ELAM K A. Rayleigh scattering diagnostic for dynamic measurement of velocity fluctuations in high speed jets:AIAA-2001-0847[R]. Reston, VA:AIAA, 2001.
[23] 杨富荣, 陈力, 闫博, 等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学, 2018, 32(3):82-86. YANG F R, CHEN L, YAN B, et al. Measurement of turbulent velocity fluctuations in transonic wind tunnel using interferometric rayleigh scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3):82-86(in Chinese).
[24] ARRINGTON E A, PASTOR C M, SIMERLY S R. Aerodynamic testing capabilities of the NASA Glenn 10-by 10-foot supersonic wind tunnel:AIAA-2011-1066[R]. Reston, VA:AIAA, 2011.
[25] 杜钰锋, 林俊, 马护生, 等. 可压缩流湍流度变热线过热比测量方法[J]. 航空学报, 2017, 38(11):121236. DU Y F, LIN J, MA H S, et al. Measurement technique of turbulence level in compressible fluid by changing overheat ratio of hot-wire anemometer[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):121236(in Chinese).
[26] 潘锦珊, 单鹏. 气体动力学基础[M]. 北京:国防工业出版社, 2012:56-64. PAN J S, SHAN P. Fundamentals of gasdynamics[M]. Beijing:National Defense Industry Press, 2012:56-64(in Chinese).
[27] STAINBACK P C, JOHNSON C B. Preliminary measurements of velocity, density and total temperature fluctuations in compressible subsonic flow:AIAA-1983-0384[R]. Reston, VA:AIAA, 1983.
[28] JONES G S, STAINBACK P C, HARRIES C D, et al. Flow quality measurements for the Langley 8-foot transonic pressure tunnel LFC experiment:AIAA-1989-0150[R]. Reston, VA:AIAA, 1989.
[29] 杨建. 蒙特卡洛法评定测量不确定度中相关随机变量的MATLAB实现[J]. 计测技术, 2012, 32(4):51-54. YANG J. The MATLAB realization of correlated random variable in evaluation of measurement uncertainty based on Monte Carlo method[J]. Metrology & Measurement Technology, 2012, 32(4):51-54(in Chinese).
[30] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京:高等教育出版社, 2008:42-50. SHENG Z, XIE S Q, PAN C Y. Probability and mathematical statistics[M]. Beijing:Higher Education Press, 2008:42-50(in Chinese).
文章导航

/