流体力学与飞行力学

缩比模型模拟全尺寸飞机自动着舰的相似关系

  • 左宪帅 ,
  • 王立新 ,
  • 刘海良 ,
  • 王云 ,
  • 张钰
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 中国舰船研究设计中心, 武汉 430064

收稿日期: 2019-03-14

  修回日期: 2019-06-06

  网络出版日期: 2019-10-11

Similarity for simulating automatic carrier landing process of full-scale aircraft with scaled-model

  • ZUO Xianshuai ,
  • WANG Lixin ,
  • LIU Hailiang ,
  • WANG Yun ,
  • ZHANG Yu
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. China Ship Research and Design Center, Wuhan 430064, China

Received date: 2019-03-14

  Revised date: 2019-06-06

  Online published: 2019-10-11

摘要

由于直接采用全尺寸舰载机进行全自动着舰试验的风险较高,可以采用缩比模型模拟全尺寸飞机进行着舰的试验方案。基于相似系统原理,研究了缩比模型模拟全尺寸飞机着舰的相似关系,具体包括着舰导引律、自动驾驶仪、进近动力补偿系统与甲板运动补偿系统的增益以及航母运动与机舰相对运动参数的相似比例关系。以某算例舰载机及其缩比模型为算例,完成了各自着舰的数学仿真计算。结果表明,全尺寸飞机着舰数学仿真结果与缩比模型仿真结果满足运动相似关系,且各项参数的相似比例与推导结果一致,证明了本文研究结论的正确性。

本文引用格式

左宪帅 , 王立新 , 刘海良 , 王云 , 张钰 . 缩比模型模拟全尺寸飞机自动着舰的相似关系[J]. 航空学报, 2019 , 40(12) : 123005 -123005 . DOI: 10.7527/S1000-6893.2019.23005

Abstract

Considering the high risk of automatic carrier landing test, a scheme to simulate the automatic carrier landing process of a full-size aircraft with its scaled-model is proposed. To realize this scheme, the similarity relations of automatic landing processes between full-size aircraft and scaled-model are deduced based on the similarity theory, including the similarity relations of automatic landing control law parameters, the similarity of carrier motion parameters, and the similarity of aircraft-carrier relative motion parameters. At last, applying the mathematical simulation models of a carrier-based early warning airplane and its scaled-model, their automatic landing processes are calculated, and the results show high similarity between their automatic landing processes in accordance with the analysis, proving that the similarities deduced in this paper are correct.

参考文献

[1] 王延刚, 屈香菊. 舰载机进舰着舰过程仿真建模[J].系统仿真学报, 2008, 20(24):6592-6594. WANG Y G, QU X J. Modeling and simulation of carrier approach and landing[J]. Journal of System Simulation, 2008, 20(24):6592-6594(in Chinese).
[2] 许东松, 刘星宇, 王立新. 航母运动对舰载飞机着舰安全性的影响[J].北京航空航天大学学报, 2011, 37(3):289-294. XU D S, LIU X Y, WANG L X. Effect of aircraft carrier movement on safety of airborne aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3):289-294(in Chinese).
[3] 杨宝钧, 刘刚, 洪冠新. 雷达信号误差对舰载机全自动着舰控制的影响[J].北京航空航天大学学报,2017,43(6):1247-1253. YANG B J, LIU G, HONG G X. Effect of radar signal error on automatic carrier landing control of carrier-based aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6):1247-1253(in Chinese).
[4] 许东松, 王立新, 贾重任. 舰载飞机着舰过程的参数适配特性[J]. 航空学报, 2012, 33(2):199-207. XU D S, WANG L X, JIA Z R. Parameter matching characteristics of carrier-based aircraft during deck landing process[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):199-207(in Chinese).
[5] 石明, 屈香菊, 王萌辉.甲板运动对舰载机人工着舰的影响和补偿[J]. 飞行力学, 2006, 24(1):5-8. SHI M, QU X J, WANG M H. The influence and compensation of deck motion in carrier landing approach[J]. Flight Dynamics, 2006, 24(1):5-8(in Chinese).
[6] 许东松, 刘星宇, 王立新. 变化风场对舰载飞机着舰安全性影响[J].北京航空航天大学学报, 2010, 36(1):77-81. XU D S, LIU X Y, WANG L X. Effect of variable wind field on ship safety of airborne aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1):77-81(in Chinese).
[7] CHAMBERS J R. Modeling flight:The role of dynamically-scaled free-flight models in support of NASA's aerospace programs:NASA/SP-2009-048942[R]. Washington, D.C.:NASA, 2009.
[8] WANG L X, ZUO X S, LIU H L, et al. Flying qualities evaluation criteria design for scaled-model aircraft based on similarity theory[J]. Aerospace Science and Technology, 2019, 90:209-221.
[9] 孙海生, 岑飞, 聂博文, 等. 水平风洞模型自由飞试验技术研究现状及展望[J]. 实验流体力学, 2011, 25(4):103-108. SUN H S, CEN F, NIE B W, et al. Present research status and prospective application of wind tunnel free-flight test technique[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):103-108(in Chinese).
[10] 何开锋, 刘刚, 张利辉, 等. 航空器带动力自主控制模型飞行试验技术研究进展[J]. 实验流体力学, 2016, 30(2):1-7. HE K F, LIU G, ZHANG L H, et al. Research on model flight test of powered aircraft with autonomous control system[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):1-7(in Chinese).
[11] 赵荣, 王立新, 徐王强.小型飞机自动着舰系统设计准则适用性分析[J]. 北京航空航天大学学报, 2017, 43(12):2488-2496. ZHAO R, WANG L X, XU W Q, et al. Analysis on the applicability of guidelines for design of small aircraft automatic arrival system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12):2488-2496(in Chinese).
[12] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2):022340. ZHEN Z Y, WANG X H, JIANG J, et al. Research progress on guidance and control of carrier aircraft auto-boarding[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):022340(in Chinese).
[13] 岑飞, 聂博文, 刘志涛, 等. 低速风洞带动力模型自由飞试验[J]. 航空学报, 2017, 38(10):121214. CEN F, NIE B W, LIU Z T. Investigation on low-speed wind tunnel free-flight test of powered subscale aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121214(in Chinese).
[14] 李浩, 赵忠良, 范召林. 风洞虚拟飞行试验模拟方法研究[J]. 实验流体力学, 2011, 25(6):72-76. LI H, ZHAO Z L, FAN Z L. Simulation method for wind tunnel based virtual flight testing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):72-76(in Chinese).
[15] 张乃平, 林国锋, 何植岱. 地面效应对舰载机起飞特性的影响[J]. 空气动力学学报, 1992, 10(4):451-456. ZHANG N P, LIU G F, HE Z D. Ground effect on the take-off characteristics of sea-based aircraft[J]. Acta Aerodynamica Sinica, 1992, 10(4):451-456(in Chinese).
[16] 乐挺, 王立新, 况龙. 农林飞机近地作业飞行的纵向稳定特性[J]. 北京航空航天大学学报, 2008, 34(6):634-637. YUE T, WANG L X, KUANG L. Longitudinal stability of an agriculture aircraft during low-altitude flight operation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(6):634-637(in Chinese).
[17] 乐挺, 王立新, 况龙. 农林飞机近地作业飞行的横航向稳定特性[J]. 航空学报, 2008, 29(4):853-858. YUE T, WANG L X, KUANG L. Lateral stability of an agriculture aircraft during low-altitude flight operation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):853-858(in Chinese).
[18] 郭林亮, 祝明洪, 孔鹏, 等. 风洞虚拟飞行模型机与原型机动力学特性分析[J].航空学报,2016, 37(8):2583-2593. GUO L L, ZHU M H, KONG P, et al. Analysis of dynamic characteristics between prototype aircraft and scaled-model of virtual flight test in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2583-2593(in Chinese).
[19] 陈孟钢, 高金源. 缩比模型飞机及其飞控系统与原型机的相似关系[J]. 飞行力学, 2003, 21(2):34-37. CHEN M G, GAO J Y. Similarity relationships between scaled-model aircraft with its flight control system and prototype aircraft[J]. Flight Dynamics, 2003, 21(2):34-37(in Chinese).
[20] 王斑, 詹浩. 遥控缩比验证模型及其飞控系统设计准则[J]. 计算机仿真, 2014, 31(6):108-110. WANG B, ZHAN H. Design criteria of remotely controlled dynamically similar model (DSM) and its flight control systems (FCS)[J]. Computer Simulation, 2014, 31(6):108-110(in Chinese).
[21] FITZGERALD T R, GINGRAS D R. Simulation support of a 17.5% scale F/A-18E/F remotely piloted vehicle:AIAA-1996-3524-CP[R]. Reston, VA:AIAA, 1996.
[22] CROOM M A, FRATELLO D J, WHIPPLE R D, et al. Dynamic model testing of the X-31 configuration for high-angel-of-attack flight dynamics research:AIAA-1993-3674-CP[R]. Reston, VA:AIAA, 1993.
[23] 姜照华. "等比性质"的应用[J]. 初中数学教与学, 2011(15):24-26. JIANG Z H. Application of equal proportion nature[J]. Junior High School Education Maths Teaching and Learning, 2011(15):24-26(in Chinese).
[24] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京:北京航空航天大学出版社, 2005:315-320. FANG Z P, CHEN W C, ZHANG S G. Aircraft flight dynamics[M]. Beijing:Beihang University Press, 2005:315-320(in Chinese).
[25] 高金源, 李陆豫, 冯亚昌. 飞机飞行品质[M].北京:国防工业出版社, 2003:98-110. GAO J Y, LI L Y, FENG Y C. Aircraft handling qualities[M]. Beijing:National Defense Industry Press, 2003:98-110(in Chinese).
[26] 章卫国, 王新民, 刘长林. 舰载飞机纵向自动着舰控制系统研究[J]. 西北工业大学学报, 1996, 14(4):549-553. ZHANG W G, WANG X M, LIU C L. The research of longitudinal carrier-based aircraft automatic landing control system[J]. Journal of Northwestern Polytechnical University, 1996, 14(4):549-553(in Chinese).
[27] 孟庆明. 自动控制原理(第二版)[M]. 北京:高等教育出版社, 2008:135. MENG Q M. Principle of automatic control(II)[M]. Beijing:Higher Education Press, 2008:135(in Chinese).
文章导航

/