换热对于容腔瞬态响应过程有显著影响,而目前缺乏分析容腔瞬态过程换热的通用方法,导致容腔瞬态响应模拟精度较差。针对这一现状,基于自由射流、冲击射流及外掠平板换热理论,提出了一种模拟非绝热单孔容腔瞬态充气过程换热的理论方法。应用该方法模拟了容腔压力和温度的瞬态响应过程,并与试验数据进行了对比。结果表明:该理论方法的模拟结果与试验数据吻合很好,压力最大相对误差不超过3%,温度最大相对误差不超过1%,验证了理论方法的可行性和准确性。而绝热模型的模拟结果与试验数据相比,压力和温度的最大相对误差分别可达12%和14%,等温模型的压力和温度的最大相对误差分别可达6%和7%,说明理论方法显著提高了容腔瞬态响应模拟精度。同时,理论分析方法不仅具有较强的通用性,还能够极大地降低分析容腔瞬态换热的成本,可以有效支撑空气系统非绝热容腔元件建模。
Heat transfer has a significant effect on the transient response process of the cavity. However, there lacks a general method for analyzing the heat transfer in the cavity transient process, resulting in poor transient response simulation accuracy. In this situation, based on the theory of free jet, impinging jet, and heat transfer for flow over a flat surface, a theoretical method for simulating heat transfer in a non-adiabatic cavity with single opening transient charging process is proposed. The transient response process of the pressure and temperature of the cavity is simulated and compared with the experimental data. The results show that the simulation results based on the theoretical method agree well with the experimental data, the maximum relative error of pressure does not exceed 3%, and the maximum relative error of temperature does not exceed 1%. The feasibility and accuracy of the theoretical method are verified. Compared with the experimental data, the maximum relative error of pressure and temperature based on adiabatic model can reach 12% and 14%. Also, the maximum relative error of pressure and temperature based on the isothermal model can reach 6% and 7%. These findings show that the theoretical method significantly improves the simulation accuracy. Meanwhile, the theoretical analysis method has strong universality, and can also greatly reduce the cost of analyzing the transient heat transfer of the cavity, which can effectively support the modeling of non-adiabatic cavity component of air system.
[1] SHIN J. The NASA aviation safety program:Overview:NASA/TM-2000-209810[R]. Washington, D.C.:NASA, 2000.
[2] 王华阁. 航空发动机设计手册——空气系统及传热分析[M]. 北京:航空工业出版社, 2001:1-5. WANG H G. Design manual of aero-engine-Analysis of air system and heat transfer[M]. Beijing:Aviation Industry Press, 2001:1-5(in Chinese).
[3] 中国人民解放军总装备部. 航空涡轮喷气和涡轮风扇发动机通用规范:GJB241A-2010[S]. 北京:总装备部军标出版发行部, 2010:25-26, 75-76. General Reserve Department of PLA. General specification for aircraft turbojet and turbofan engine:GJB241A-2010[S]. Beijing:General Reserve Department Military Standards Publishing Department, 2010:25-26, 75-76(in Chinese).
[4] DUTTON J C, COVERDILL R E. Experiments to study the gaseous discharge and filling of vessels[J]. International Journal of Engineering Education, 1997, 13(2):123-134.
[5] THORNCROFT G, PATTON J S, GORDON R. Modeling compressible air flow in a charging or discharging vessel and assessment of polytropic exponent[C]//ASEE Annual Conference, 2007.
[6] GALLAR L, CALCAGNI C. Time accurate modelling of the secondary air system response to rapid transients[J]. Journal of Aerospace Engineering, 2011, 225(8):946-958.
[7] 高文君, 刘振侠, 朱鹏飞, 等.航空发动机静止盘腔瞬态特性数值与实验研究[J].推进技术, 2019, 40(3):496-503. GAO W J, LIU Z X, ZHU P F, et al. Numerical and experimental investigation of transient response of static disc cavity in aero-engine[J]. Journal of Propulsion Technology, 2019, 40(3):496-503(in Chinese).
[8] 杨丽红, 沈航明, 宋元明. 等温容器放气过程中对流换热模型的研究[J]. 中国机械工程, 2014, 25(18):2489-2495. YANG L H, SHEN H M, SONG Y M. Study on convection heat transfer model of isothermal chamber during discharge[J]. China Mechanical Engineering, 2014, 25(18):2489-2495(in Chinese).
[9] 郭钟华, 李小宁, 香川利春. 考虑热传递的真空容腔压力响应研究[J]. 真空科学与技术学报, 2015, 35(1):74-78. GUO Z H, LI X N, TOSHIHARU K. Impact of heat transfer on pressure response in vacuum chamber of pneumatic vacuum system[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(1):74-78(in Chinese).
[10] DING S T, YU H, QIU T. Modeling of the cavity response to rapid transient considering the effect of heat transfer:GT2018-75264[R]. New York:ASME, 2018.
[11] 丁水汀, 于航, 邱天. 非绝热单孔容腔瞬态响应的零维建模[J]. 北京航空航天大学学报, 2018, 44(2):215-222. DING S T, YU H, QIU T. Zero-dimensional modeling for transient response of non-adiabatic cavity with single opening[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2):215-222(in Chinese).
[12] ALBERTSON M L, DAI Y B, JENSEN R A, et al. Diffusion of submerged jets[J]. Transactions of the American Society of Civil Engineers, 1950, 115(1):639-664.
[13] SCHLICHTING H. Boundary layer theory[M]. 9th ed. Heidelberg:Springer, 2017:118-119.
[14] BELTAOS S, RAJARATNAM N. Impinging circular turbulent jets[J]. Journal of the Hydraulics Division, 1974,100(10):1313-1328.
[15] LIENHARD J H IV, LIENHARD J H V. A heat transfer textbook[M]. 3rd ed. Cambridge, MA:Phlogiston Press, 2006:301-302.
[16] HARTNETT J P, IRVINE T F. Advances in heat transfer:Volume 13[M]. New York:Academic Press, 1977:4-5.
[17] BEITELMAL A H, SHAH A J, SAAD M A. Analysis of an impinging two-dimensional jet[J]. Journal of Heat Transfer, 2006, 128(3):307-310.
[18] GARDON R, AKFIRAT J C. The role of turbulence in determining the heat-transfer characteristics of impinging jets[J]. International Journal of Heat and Mass Transfer, 1965, 8(10):1261-1271.
[19] KATTI V, PRABHU S V. Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle[J]. International Journal of Heat and Mass Transfer, 2008, 51(17-18):4480-4495.
[20] POREH M, TSUEI Y G, CERMAK E. Investigation of a turbulent radial wall jet[J]. Journal of Applied Mechanics, 1967, 34(2):457-463.