电子电气工程与控制

面向空中目标威胁评估的多传感器管理方法

  • 张昀普 ,
  • 单甘霖
展开
  • 陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003

收稿日期: 2019-06-13

  修回日期: 2019-06-30

  网络出版日期: 2019-08-05

基金资助

国防预研基金(012015012600A2203)

Multi-sensor management approach for aerial target threat assessment

  • ZHANG Yunpu ,
  • SHAN Ganlin
Expand
  • Department of Electronic and Optical Engineering, Army Engineering University Shijiazhuang Campus, Shijiazhuang 050003, China

Received date: 2019-06-13

  Revised date: 2019-06-30

  Online published: 2019-08-05

Supported by

Defense Pre-research Fund Project of China (012015012600A2203)

摘要

为了降低在空中目标威胁评估任务中由于威胁评估结果的不准确性和传感器辐射所带来的潜在损失,提出了一种基于风险的多传感器管理方法。首先,基于部分可观马尔可夫决策过程建立了传感器管理模型;然后,给出了基于信息状态的威胁评估风险和传感器辐射风险的预测方法以量化潜在损失;接着,为获得更优的作战收益,以多步风险预测值为决策依据,以两种风险的加权和最小为优化目标建立了长期目标函数;最后,在求解目标函数时,将传感器管理问题转化为决策树搜索,设计了一种基于分支定界的标准代价搜索算法以快速获得高质量的管理方案。仿真实验表明,所提算法能够在搜索到高质量解的同时大幅减少计算时间和内存消耗;所提方法能够对风险进行准确预测,且相比于经典的传感器管理方法,所提方法具有更好的风险控制效果。

本文引用格式

张昀普 , 单甘霖 . 面向空中目标威胁评估的多传感器管理方法[J]. 航空学报, 2019 , 40(11) : 323218 -323218 . DOI: 10.7527/S1000-6893.2019.23218

Abstract

To reduce the potential losses caused by the inaccuracy of threat assessment and sensor radiation in the process of aerial target threat assessment, a risk-based multi-sensor management approach is proposed in this paper. First, a sensor management model based on partially observable Markov decision process is built. Second, the belief-state-based prediction methods for threat assessment risk and radiation risk are proposed to quantify the potential losses. Then, a non-myopic objective function based on multi-step risk prediction value is built and the objective is to obtain the minimal sum of threat assessment risk and radiation risk. Furthermore, to efficiently obtain the optimal solution, the sensor management problem is transformed into a decision tree search problem, and a branch-and-bound-based uniform cost search algorithm is designed. The simulation results show that the proposed algorithm can find high-quality solution while greatly reducing the computational time and memory consumption compared with the classical algorithms. The proposed management approach can accurately predict the risk, and has better risk control effect compared with the existing sensor management methods.

参考文献

[1] 闫涛, 韩崇昭, 张光华. 空中目标传感器管理方法综述[J]. 航空学报, 2018, 39(10):022209. YAN T, HAN C Z, ZHANG G H. An overview of sensor management approaches for aerial target[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):022209. (in Chinese).
[2] PANG C, SHAN G L, DUAN X S, et al. A multi-mode sensor management approach in the missions of target detecting and tracking[J]. Electronics, 2019, 8(1):71-88.
[3] KALANDROS M, PAO L Y. Multi-sensor covariance control strategies for reducing bias effects in interacting target scenarios[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1):153-173.
[4] SAURAV S, YIMIN D Z, MOEN G A. Cramer-Rao type bounds for sparsity-aware multi-sensor multi-target tracking[J]. Signal Process, 2018, 145(1):68-77.
[5] SAYIN M O, CHUNG W L, SHINICHI S, et al. Information-driven autonomous intersection control via incentive compatible mechanisms[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 99(1):1-13
[6] 张华睿, 杨宏文, 胡卫东, 等. 基于Fisher信息距离的传感器管理方法[J]. 系统工程与电子技术, 2012, 34(8):1587-1591. ZHANG H R, YANG H W, HU W D, et al. Method for sensor management based on Fisher information distance[J]. Journal of Systems Engineering & Electronics, 2012, 34(8):1587-1591(in Chinese).
[7] MARCOS E G B, DOMINIQUE M, PHILIPPE V. Sensor management using expected risk reduction approach[C]//19th International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2016.
[8] 乔成林, 单甘霖, 段修生, 等. 多平台主动与被动传感器协同跟踪的长时调度方法[J]. 兵工学报, 2019, 40(1):115-123. QIAO C L, SHAN G L, DUAN X S, et al. Non-myopic scheduling algorithm of multi-platform active/passive sensors for collaboration tracking[J]. Acta Armamentarii, 2019, 40(1):115-123(in Chinese).
[9] THARMARASA R, KIRUBARAJAN T, HERNANDEZ M, et al. PCRLB-based multi-sensor array management for multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1):539-555.
[10] 刘欣怡, 赵诚, 单甘霖, 等. 面向目标跟踪的基于Rényi信息增量的多传感器管理[J]. 信息与控制, 2015, 44(2):184-189. LIU X Y, ZHAO C, SHAN G L, et al. Multi-sensor management based on Rényi information gain for maneuvering target-tracking[J]. Information and Control, 2015, 44(2):184-189(in Chinese).
[11] 刘钦, 刘峥. 一种基于Rényi信息增量的机动目标协同跟踪方法[J]. 控制与决策, 2012, 27(9):1437-1440. LIU Q, LIU Z. A method of maneuvering target cooperative tracking based on Rényi information gain[J]. Control and Decision, 2012, 27(9):1437-1440(in Chinese).
[12] 庞策, 单甘霖. 基于操作风险的双模式传感器管理方法[J/OL]. 控制与决策, (2019-04-01)[2019-06-11]. https://doi.org/10.13195/j.kzyjc.2018.1541. PANG C, SHAN G L. A dual-mode sensor management method based on operational risk[J/OL]. Control and Decision, (2019-04-01)[2019-06-11]. https://doi.org/10.13195/j.kzyjc.2018.1541(in Chinese).
[13] WANG Y, HUSSEIN I I, ERWIN R S. Risk-based sensor management for integrated detection and estimation[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2011.
[14] PAPAGEORGIOU D, RAYKIN M. A risk-based approach to sensor resource management[C]//Advances in Cooperative Control and Optimization. Berlin:Springer, 2007.
[15] FOTIOS K, HANS D, ALEXANDER Y. Threat-based sensor management for target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4):2772-2785.
[16] XU G G, PANG C, DUAN X S, et al. Multi-sensor optimization scheduling for target tracking based on PCRLB and a novel intercept probability factor[J]. Electronics, 2019, 8(1):140-161.
[17] ZHANG Z N, SHAN G L. UTS-based foresight optimization of sensor scheduling for low interception risk tracking[J]. International Journal of Adaptive Control & Signal Processing, 2015, 28(10):921-931.
[18] KRISHNAMURTHY V. Emission management for low probability intercept sensors in network centric warfare[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1):133-151.
[19] SHAN G L, ZHANG Z N. Non-myopic sensor scheduling for low radiation risk tracking using mixed POMDP[J]. Transactions of the Institute of Measurement and Control, 2017, 39(2):230-243.
[20] 万开方, 高晓光, 李波, 等. 基于部分可观察马尔可夫决策过程的多被动传感器组网协同反隐身探测任务规划[J]. 兵工学报, 2015, 36(4):731-743. WAN K F, GAO X G, LI B, et al. Mission planning of passive networked sensors for cooperative anti-stealth detection based POMDP[J]. Acta Armamentarii, 2015, 36(4):731-743(in Chinese).
[21] 乔成林, 单甘霖, 段修生, 等. 面向跟踪任务需求的主动传感器调度方法[J]. 系统工程与电子技术, 2017, 39(11):2515-2521. QIAO C L, SHAN G L, DUAN X S, et al. Scheduling algorithm of active sensors for tracking task requirement[J]. Systems Engineering and Electronics, 2017, 39(11):2515-2521(in Chinese).
[22] ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6):1254-1269.
[23] HUBER M F. Optimal pruning for multi-step sensor scheduling[J]. IEEE Transactions on Automatic Control, 2012, 57(5):1338-1343.
[24] 徐公国, 单甘霖, 段修生. 采用马氏决策过程和后验克拉美罗下界的多被动式移动传感器长期调度方法[J]. 西安交通大学学报, 2019, 53(6):125-133,150. XU G G, SHAN G L, DUAN X S. A non-myopic scheduling method of multiple passive mobile sensors based on Markov decision process and posterior Carmér-Rao lower bound[J]. Journal of Xi'an Jiaotong University, 2019, 53(6):125-133,150(in Chinese).
[25] CHHETRI A S, MORRELL D, PAPANDREOU S A. Nonmyopic sensor scheduling and its efficient implementation for target tracking applications[J]. EURASIP Journal on Advances in Signal Processing, 2006, 10(1):1-18.
文章导航

/