电子电气工程与控制

静电电磁脉冲辐射场诱发针-球电极结构放电试验

  • 谢喜宁 ,
  • 胡小锋 ,
  • 原青云
展开
  • 陆军工程大学石家庄校区 电磁环境效应国家级重点实验室, 石家庄 050003

收稿日期: 2019-05-15

  修回日期: 2019-07-15

  网络出版日期: 2019-08-05

基金资助

装备预研基金重点项目(61402090201);国家自然科学基金(51777213)

Electrostatic electromagnetic pulse radiation field induced needle-sphere electrode structural discharge test

  • XIE Xining ,
  • HU Xiaofeng ,
  • YUAN Qingyun
Expand
  • National Key Laboratory of Strong Electromagnetic Environmental Effects Army University of Engineering Shijiazhuang Campus, Shijiazhuang 050003, China

Received date: 2019-05-15

  Revised date: 2019-07-15

  Online published: 2019-08-05

Supported by

Key Projects of Equipment Pre-research Foundation(61402090201); National Natural Science Foundation of China (51777213)

摘要

针对当前国内外诱发静电放电(ESD)研究较少的实际情况,为了解自然环境下静电放电辐射场诱发放电的基本特性,进一步分析诱发放电的特征规律,建立了大气条件下诱发放电试验系统。主要采取理论分析、试验验证的方式,对静电放电辐射场诱发针-球电极结构放电的基本规律进行摸索,初步得出了诱发放电的基本规律。研究结果表明:在外界条件一定的情况下,随着辐射场强的不断增大,放电重复频率不断增大;在辐射场强一定的情况下,随着高压源电压的不断增大,诱发放电重复频率不断增大;在外界环境条件一定的情况下,能够确定该条件下的诱发放电唯一阈值。这些试验规律的取得,为真空条件下的诱发放电特性研究提供了试验方法和理论依据,对开展航天器运行环境中的诱发放电研究和防护方法设计具有重要意义。

本文引用格式

谢喜宁 , 胡小锋 , 原青云 . 静电电磁脉冲辐射场诱发针-球电极结构放电试验[J]. 航空学报, 2019 , 40(11) : 323161 -323161 . DOI: 10.7527/S1000-6893.2019.23161

Abstract

In view of the fact that there are few researches on induced electrostatic discharge at home and abroad, in order to understand the basic characteristics of Electro Static Discharqi (ESD) induced by radiation field in natural environment and further analyze the characteristics of ESD induced by radiation field, an experimental system of ESD induced by atmosphere was established. In this paper, by means of theoretical analysis and experimental verification, the basic rules of needle-sphere electrode structure discharge induced by ESD radiation field are explored, and the basic rules of induced discharge are preliminarily obtained. The results show that the repetition frequency of the induced discharge increases with the increase of radiation field while controlling the external conditions; the repetition frequency of the induced discharge increases with the increase of voltage of high voltage source when controlling the radiation field intensity; and the unique threshold of induced discharge when controlling the external environment conditions can be determined. These experimental rules provide experimental methods and theoretical basis for studying the induced discharge characteristics under vacuum conditions, and are of great significance for the study of induced discharge in spacecraft operating environment and the design of protection methods.

参考文献

[1] 刘业楠,赵华,易忠, 等.空间站带电效应分析及对策[J].载人航天,2013:19(5):6-12. LIU Y N, ZHAO H, YI Z, et al. Analysis of electrification effect of space station and countermeasures[J]. Manned Space Flight, 2013, 19(5):6-12(in Chinese).
[2] GARRETT H B. Mitigation in-space charging effects-A guideline[S]. Washington, D.C.:NASA, 2011.
[3] MIYAKE H, HONJOH M, MARUTA Y. Space charge accumulation in polymeric materials for spacecraft irradiated electron and proton[C]//Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2007:763-766.
[4] 原青云, 孙永卫, 张希军, 等. 航天器带电理论及防护[M]. 北京:国防工业出版社, 2016. YUAN Q Y, SUN Y W, ZHANG X J, et al. Theory and protection of spacecraft electrification[M]. Beijing:National Defense Industry Press, 2016(in Chinese).
[5] LANZEROTTI L J,BREGLIA C,MAURER D W, et al. Studies of spacecraft charging on a geosynchronous telecommunications satellite[J]. Advancese in Space Research, 1998, 22(1):79-82.
[6] ROSEN A. Spacecraft charging:Environment induced anomalies:AIAA-1976-03[R]. Reston, VA:AIAA, 1975.
[7] LAI S T. A survey of spacecraft charging events:AIAA -1998-1427[R]. Reston, VA:AIAA, 1998.
[8] MCCOLLUM M B, NEERGAARD L F. Spacecraft charging effects program at Marshall Space Flight Center:AIAA-1996-1636[R]. Reston, VA:AIAA, 1996.
[9] WHITTLESEY A, GARRETT H. Avoiding problems caused by spacecraft on-orbit internal charging ellects:NASA-HDBK-4002[S]. Washington, D.C.:NASA, 1999.
[10] 张悦, 刘尚合, 胡小锋, 等.电晕放电辐射信号的探测系统与识别方法[J].高电压技术, 2014, 40(9):2813-2819. ZHANG Y, LIU S H, HU X F, et al. Detection system and identification method of corona discharge radiation signal[J]. High Voltage Engineering, 2014, 40(9):2813-2819(in Chinese).
[11] 郝永强, 焦维新, 陈鸿飞. 用蒙特卡罗方法计算2004年7月电子暴事件对星上分系统的内部充电效应[J].地球物理学进展, 2009, 24(6):1937-1942. HAO Y Q, JIAO W X, CHEN H F. Monte Carlo method for calculating the internal charging effect of the July 2004 electronic storm event on the satellite subsystem[J]. Progress in Geophysics, 2009, 24(6):1937-1942(in Chinese).
[12] 朱立颖, 乔明, 刘业楠, 等. LEO航天器高压大功率太阳电池阵静电放电试验与分析[J]. 航天器工程, 2015, 24(4):65-70. ZHU L Y, QIAO M, LIU Y N, et al. LEO spacecraft high voltage and high power solar array electrostatic discharge test and analysis[J]. Spacecraft Engineering, 2015, 24(4):65-70(in Chinese).
[13] 曹鹤飞, 马策一, 刘浩, 等. 电磁场辐照诱发真空电晕放电模拟试验系统[J]. 强激光与粒子束, 2016,28(8):112-115. CAO H F, MA C Y, LIU H, et al. Simulated test system of vacuum corona discharge induced by electromagnetic field irradiation[J]. Intense Laser and Particle Beam, 2016, 28(8):112-115(in Chinese).
[14] 胡小锋, 刘尚合, 王雷, 等. 尖端导体电晕放电辐射场的计算与实验[J]. 高电压技术, 2012, 38(9):2266-2272. HU X F, LIU S H, WANG L, et al. Calculation and experiment of corona discharge radiation field of advancedconductor[J]. High Voltage Engineering, 2012, 38(9):2266-2272(in Chinese).
[15] HAN J, HUANG J G, LIU Z, et al. Correlation of double star anomalies with space environment[J]. Journal of Spacecraft and Rockets, 2005, 42(6):1061-1065.
[16] 张天平. 兰州空间技术物理研究所电推进新进展[J]. 火箭推进, 2015, 41(2):7-12. ZHANG T P. New progress of electric propulsion in lanzhou institute of space technology physics[J]. Rocket Propulsion, 2015, 41(2):7-12(in Chinese).
[17] SHU T L.航天器带电原理[M]. 李盛涛,郑晓泉,陈玉, 等,译. 北京:科学出版社,2015. SHU T L. Electrification principle of spacecraft[M]. LI S T, ZHENG X Q, CHEN Y, et al, translation. Beijing:Science Press, 2015(in Chinese).
[18] 全荣辉, 韩建伟, 黄建国, 等.电介质材料辐射感应电导率的模型研究[J].物理学报, 2007, 56(11):6642-6647. QUAN R H, HAN J W, HUANG J G, et al. Model study on radiation-induced conductivity of dielectric materials[J]. Acta physica Sinica, 2007, 56(11):6642-6647(in Chinese).
[19] TANG X J, YI Z, MENG L F, et al. 3-D internal charging simulation on typical printed circuit board[J]. IEEE Transactions on Plasma Science, 2013, 41(12):3448-3452.
[20] 许滨, 武占成, 郝永锋, 等. 航天器在轨空间环境研究[J]. 河北科技大学学报, 2011,32:9-14. XU B, WU Z C, HAO Y F, et al. Research on spacecraft in orbit space environment[J]. Journal of Hebei University of Science and Technology, 2011, 32:9-14(in Chinese).
[21] 薛梅.高压砷化镓太阳阵ESD效应及防护技术研究[D]. 天津:天津大学, 2007. XUE M. ESD effect of high-voltage gallium arsenide solar array and its protection technology[D]. Tianjin:Tianjin University, 2007(in Chinese).
[22] 刘尚合, 魏光辉, 刘直承, 等. 静电理论与防护[M]. 北京:兵器工业出版社, 1999. LIU S H, WEI G H, LIU Z C, et al. Electrostatic theory and protection[M]. Beijing:Ordnance Industry Press, 1999(in Chinese).
[23] 黄本诚, 童靖宇. 空间环境工程学[M]. 北京:中国科学技术出版社, 2010. HUANG B H, TONG J Y. Space environmental engineering[M]. Beijing:China Science and Technology Press, 2010(in Chinese).
[24] FINCKENOR M M, KAMENETZKY R R, VAUGHN J A, et al. Space environmental effects testing in support of the international space station[C]//38th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2000:1-10.
[25] OKUMURA T, MASHIDORI H, TAKAHASHI M, et al. Temperature effect on primary discharge under simulated space plasma environment[J]. IEEE Transactions on Plasma Science, 2012, 40(2):345-350.
[26] ROEDER J L, FENNELL J F. Differential charging of satellite surface materials[J]. IEEE Transactions on Plasma Science, 2009, 37(1):281-289.
[27] 李丹明, 陈学康. 空间环境效应与防护技术研究现状与发展设想[J]. 航天器环境工程, 2008, 25(3):224-228. LI D M, CHEN X K. Research status and development of space environment effect and protection technology[J]. Spacecraft Environmental Engineering, 2008, 25(3):224-228(in Chinese).
[28] 冯伟泉.大型空间地磁亚暴环境地面模拟试验[J]. 航天器环境工程, 2001, 18(4):33-42. FENG W Q. Ground simulation test of large space geomagnetic substorm environment[J]. Spacecraft Environmental Engineering, 2001, 18(4):33-42(in Chinese).
[29] WHITTLESEY A, GARRETT H R. NASA's technical handbook for avoiding on-orbit ESD anomalies due to internal charging effects[C]//Proceedings of the 6th Spacecraft Charging Conference, 2000, 9:131-134.
[30] 刘海莹. 极端条件下介质的抗辐射静电防护技术研究[D]. 长沙:国防科技大学, 2005. LIU H Y. Research on anti-radiation electrostatic protection technology of media under extreme conditions[D]. Changsha:National University of Defense Technology, 2005(in Chinese).
[31] WILSON J W, NEALY J E, De Angelis G, et al. Deep space environment shielding[C]//Space Technology and Applications International Forum, 2003:993-1010.
[32] 许滨, 原青云, 武占成, 等. 低气压环境下航天材料静电防护地面模拟[J]. 高电压技术, 2013, 39(12):2894-2898. XU B, YUAN Q Y, WU Z C, et al. Ground simulation of electrostatic protection for aerospace materials under low pressure environment[J]. High Voltage Engineering, 2013, 39(12):2894-2898(in Chinese).
[33] 黄本诚, 马有礼. 航天器空间环境试验技术[M]. 北京:国防工业出版社, 2002. HUANG B C, MA Y L. Space environment test technology for spacecraft[M]. Beijing:National Defense Industry Press, 2002(in Chinese).
[34] 龚自正, 曹燕, 候明强, 等. 空间环境及其对航天器的影响与防护技术[J].数学力学物理学高新技术研究进展, 2008(12):287-297. GONG Z Z, CAO Y, HOU M Q, et al. Space environment and its influence on spacecraft and protection technology[J]. Advances in High and New Technologies in Mathematical Mechanics and Physics, 2008(12):287-297(in Chinese).
文章导航

/