翼身融合民机技术专栏

翼身融合民机典型PRSEUS受压壁板屈曲及渐进损伤分析

  • 张永杰 ,
  • 吴莹莹 ,
  • 朱胜利 ,
  • 王斌团 ,
  • 谭兆光 ,
  • 袁昌盛
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 航空工业 第一飞机设计研究院, 西安 710089;
    3. 上海飞机设计研究院, 上海 201210

收稿日期: 2019-05-24

  修回日期: 2019-06-24

  网络出版日期: 2019-07-29

基金资助

国家自然科学基金(11972301)

Buckling and progressive damage analysis of representative compressed PRSEUS panel in blended-wing-body civil aircraft

  • ZHANG Yongjie ,
  • WU Yingying ,
  • ZHU Shengli ,
  • WANG Bintuan ,
  • TAN Zhaoguang ,
  • YUAN Changsheng
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC The First Aircraft Institute, Xi'an 710089, China;
    3. Shanghai Aircraft Design and Research Institute, Shanghai 201210, China

Received date: 2019-05-24

  Revised date: 2019-06-24

  Online published: 2019-07-29

Supported by

National Nature Science Foundation of China (11972301)

摘要

由NASA和波音公司共同提出的拉挤杆缝合高效一体化结构(PRSEUS),由于具有优异的抗压稳定性和止损/止裂等承载优势,已成为解决翼身融合布局民机非圆截面机身结构承载效率低和稳定性差等问题的主要途径。本文针对典型PRSEUS受压壁板结构,开展了线性/非线性屈曲及渐进损伤分析;提出了综合考虑蒙皮、止裂带、长桁翻边、隔框翻边等一体化缝合元件贯穿支撑构型几何关系和偏置参考面的建模方法,提高了PRSEUS受压壁板有限元模型的精度;提出了综合考虑屈曲特征值、非线性屈曲载荷等多影响因素的网格收敛性分析方法,提高了PRSEUS受压壁板屈曲分析的计算效率;提出了最小屈曲特征值、几何节点偏移以及最小屈曲特征值-几何节点偏移组合式等3种初始缺陷引入方法,提高了PRSEUS受压壁板损伤分析的计算精度;完成了基于纤维与基体损伤本构关系的典型PRSEUS受压壁板非线性屈曲损伤分析,通过与试验结果对比,给出了针对PRSEUS结构的非线性屈曲渐进损伤演化分析方法。为翼身融合布局民机PRSEUS结构的稳定性/损伤分析和设计提供了方法和技术支撑。

本文引用格式

张永杰 , 吴莹莹 , 朱胜利 , 王斌团 , 谭兆光 , 袁昌盛 . 翼身融合民机典型PRSEUS受压壁板屈曲及渐进损伤分析[J]. 航空学报, 2019 , 40(9) : 623185 -623185 . DOI: 10.7527/S1000-6893.2019.23185

Abstract

Due to the excellent loading advantage of stability under compression and damage arrest/crack arrest, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), put forward by NASA and the Boeing Company, has become the major solution to solve low efficiency and poor stability problems caused by non-circular fuselage cross section in civil aircraft. This paper carries out linear/nonlinear buckling and progressive damage analysis for representative compressed PRSEUS panel structure. The methods of modeling the geometric relationship of the support configuration and offset reference surface of skin, tears-trap, stringer flange, frame flange integrated stitched supporting configuration are put forward, improving the accuracy of the finite element model of PRSEUS compressed panel. A mesh convergence analysis method that takes buckling eigenvalue, nonlinear buckling load and other factors into account is proposed to improve the computational efficiency of PRSEUS compressed panel buckling analysis. Three initial imperfection introduction methods including the minimum buckling eigenvalue, geometrical node offset, and combination of the minimum buckling eigenvalue and geometrical node offset are presented to improve the calculation accuracy of the finite element model of PRSEUS compressed panel. Finally, the nonlinear buckling progressive damage analyses of representative PRSEUS compressed panel based on the damage constitutive relation between fiber and matrix are completed. By comparing the experimental results, the nonlinear buckling progressive damage evolution analysis methods for PRSEUS structure are presented. This paper provides the methods and technical support for the stability/damage analysis and design of the PRSEUS structure in blended-wing-body civil aircraft.

参考文献

[1] LAUGHLIN T, CORMAN J, MAVRIS D. A parametric and physics-based approach to structural weight estimation of the hybrid wing body aircraft[C]//51st AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston,VA:AIAA, 2013:16076-16095.
[2] DICKEY E D, PRINCEN N, BONET J T, et al. Wind tunnel model design and fabrication of a 5.75% scale blended-wing-body twin jet configuration[C]//54th AIAA Aerospace Sciences Meeting. Reston,VA:AIAA, 2016.
[3] FLANSBURG B D. Structural loads analysis of a hybrid wing body transport[C]//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston,VA:AIAA, 2017.
[4] GERN F H. Conceptual design and structural analysis of an open rotor hybrid wing body aircraft[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston,VA:AIAA, 2013.
[5] LAUGHLIN T W, CORMAN J A, MAVRIS D N. A parametric and physics-based approach to structural weight estimation of the hybrid wing body aircraft[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston,VA:AIAA, 2013.
[6] NICKOL C L. Hybrid wing body configuration scaling study[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston,VA:AIAA, 2012.
[7] LIEBECK R. Blended wing body design challenges[C]//AIAA International Air and Space Symposium and Exposition:The Next 100 Years. Reston,VA:AIAA, 2003.
[8] MUKHOPADHYAY V. Hybrid wing-body pressurized fuselage modeling, analysis, and design for weight reduction[C]//53rd AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2012.
[9] MUKHOPADHYAY V. Hybrid-wing-body vehicle composite fuselage analysis and case study[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Reston,VA:AIAA, 2014.
[10] MUKHOPADHYAY V, SOBIESZCZANSKI-SOBIESKI J, KOSAKA I, et al. Analysis design and optimization of non-cylindrical fuselage for blended-wing-body (BWB) vehicle[C]//9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston,VA:AIAA, 2002.
[11] BISHARA M, HORST P, MADHUSOODANAN H,et al. A structural design concept for a multi-shell blended wing body with laminar flow control[J]. Energies, 2018, 11(2):383.
[12] MUKHOPADHYAY V. Blended-wing-body (BWB) fuselage structural design for weight reduction[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2005.
[13] VELICKI A, THRASH P, JEGLEY D. Airframe development for the hybrid wing body aircraft[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston,VA:AIAA, 2009.
[14] LIEBECK R H, PAGE M A, RAWDON B K. Blended-wing-body subsonic commercial transport[C]//36th Aerospace Sciences Meeting & Exhibit. Reston,VA:AIAA, 1998.
[15] KAWAI R T. Benefit potential for a cost efficient dual fuel bwb[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston,VA:AIAA, 2013.
[16] REIST T A, ZINGG D W. Optimization of the aerodynamic performance of regional and wide-body-class blended wing-body aircraft[C]//33rd AIAA Applied Aerodynamics Conference. Reston,VA:AIAA, 2015.
[17] RISCH T, COSENTINO G, REGAN C D, et al. X-48b flight-test progress overview[C]//47th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA, 2009.
[18] VOS R, GEUSKENS F, HOOGREEF M F M. A new structural design concept for blended wing body cabins[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2012.
[19] CHO S H, BIL C, ADAMS R. Design and analysis of bwb military cargo centre body structure[C]//AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". Reston,VA:AIAA, 2011.
[20] CHO S H, BIL C, BAYANDOR J. Structural design and analysis of a bwb military cargo transport fuselage[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA, 2008.
[21] BRADLEY K R. A sizing methodology for the conceptual design of blended-wing-body transports:NASA/CR-2004-213016[R]. Washington, D. C.:NASA, 2004.
[22] LIEBECK R. Design of the blended-wing-body subsonic transport[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston,VA:AIAA, 2002.
[23] YOVANOF N P, VELICKI A, LI V. Advanced structural stability analysis of a noncircular bwb-shaped vehicle[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston,VA:AIAA, 2009.
[24] LI V, LINTON K. Hybrid wing body (hwb) aircraft design and optimization using stitched composites[C]//16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston,VA:AIAA, 2015.
[25] GERN F H. Update on HCDstruct-A tool for hybrid wing body conceptual design and structural optimization[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. Reston,VA:AIAA, 2015.
[26] WU H T, SHAW P, PRZEKOP A. Analysis of a hybrid wing body center section test article[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston,VA:AIAA, 2013.
[27] GERN F H. Finite element based hwb centerbody structural optimization and weight prediction[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2012.
[28] QUINLAN J R, GERN F H. Conceptual design and structural optimization of NASA environmentally responsible aviation (era) hybrid wing body aircraft[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston,VA:AIAA, 2016.
[29] JOHNSTON P H, JUAREZ P D. Ultrasonic nondestructive evaluation of pultruded rod stitched efficient unitized structure (PRSEUS) during large-scale load testing and rod push-out testing:NASA/TM-2016-218978[R]. Was-hington, D. C.:NASA, 2016.
[30] HORNE M R, MADARAS E I. Evaluation of acoustic emission SHM of PRSEUS composite pressure cube tests:NASA/TM-2013-217993[R]. Washington, D.C.:NASA, 2013.
[31] JEGLEY D C. Experimental behavior of fatigued single stiffener PRSEUS specimens:NASA/TM-2009-215955[R]. Washington, D.C.:NASA, 2009.
[32] WANG J T, GRENOBLE R W, PICKELL R D. Structural integrity testing method for prseus rod-wrap stringer design[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference. Reston,VA:AIAA, 2012.
[33] JEGLEY D C, VELICKI A. Development of the prseus multi-bay pressure box for a hybrid wing body vehicle[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston,VA:AIAA, 2015.
[34] LOVEJOY A E, POPLAWSKI S. Preliminary design and analysis of an in-plane prseus joint[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston,VA:AIAA, 2013.
[35] LOVEJOY A E, LEONE JR F A. T-cap pull-off and bending behavior for stitched structure:NASA/TM-2016-218971[R]. Washington, D.C.:NASA, 2016.
[36] LOVEJOY A, ROUSE M, LINTON K, et al. Pressure testing of a minimum gauge PRSEUS panel[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2011.
[37] JEGLEY D, ROUSE M, PRZEKOP A, et al. Testing of a stitched composite large-scale pressure box[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2016.
[38] VELICKI A, JEGLEY D. Prseus structural concept development[C]//52nd Aerospace Sciences Meeting. Reston,VA:AIAA, 2014.
[39] LOVEJOY A E, LEONE F A. Tension and bending testing of an integral t-cap for stitched composite airframe joints[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston,VA:AIAA, 2016.
[40] JEGLEY D C. Behavior of frame-stiffened composite panels with damage[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston,VA:AIAA, 2013.
[41] PRZEKOP A, JEGLEY D C, LOVEJOY A E, et al. Testing and analysis of a composite non-cylindrical aircraft fuselage structure, Part I:Ultimate design loads[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2016.
[42] PRZEKOP A, JEGLEY D C, LOVEJOY A E, et al. Testing and analysis of a composite non-cylindrical aircraft fuselage structure, Part Ⅱ:Severe damage[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2016.
[43] PRZEKOP A. Repair concepts as design constraints of a stiffened composite prseus panel[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2012.
[44] VELICKI A, JEGLEY D. Prseus development for the hybrid wing body aircraft[C]//AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". Reston,VA:AIAA, 2011.
[45] PAPAPETROU V S, TAMIJANI A, KIM D. Preliminary wing study of general aviation aircraft with prseus panels[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston,VA:AIAA, 2016.
[46] LI V, VELICKI A. Advanced prseus structural concept design and optimization[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston,VA:AIAA, 2008.
[47] VELICKI A. Damage arresting composites for shaped vehicles phase 1 final report:NASA/CR-2009-215932[R]. Washington, D. C.:NASA, 2009.
[48] VELICKI A, THRASH P. Advanced structural concept development using stitched composites[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2008.
[49] YOVANOF N P, JEGLEY D C. Compressive behavior of frame-stiffened composite panels[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2011.
[50] VELICKI A, YOVANOF N, BARAJA J, et al. Damage arresting composites for shaped vehicles-phase Ⅱ final report:NASA/CR-2011-216880[R].Washington, D.C.:NASA, 2011.
[51] LINTON K A, VELICKI A, HOFFMAN K, et al. Prseus panel fabrication final report:NASA/CR-2014-218149[R]. Washington, D.C.:NASA, 2014.
[52] VELICKI A, YOVANOF N P, BARAJA J, et al. PRSEUS acoustic panel fabrication:NASA/CR-2011-217309[R]. Washington, D.C.:NASA, 2011.
[53] SANZ-DOUGLASS G J, VENKATARAMAN S. Parametric study of influence of stiffener variables onpost-buckling response of frame stiffened composite panels[C]//57th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference. Reston,VA:AIAA, 2016.
[54] LAPCZYK I, HURTADO J A. Progressive damage modeling in fiber-reinforced materials[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(11):2333-2341.
[55] JEGLEY D C. Improving strength of postbuckled panels through stitching[J]. Composite Structures, 2007, 80(2):298-306.
文章导航

/