流体力学与飞行力学

前缘下垂远场低频宽频噪声特性

  • 陆维爽 ,
  • 刘沛清 ,
  • 郭昊
展开
  • 1. 北京航空航天大学 航空气动声学工信部重点实验室, 北京 100083;
    2. 北京航空航天大学 流体力学教育部重点实验室, 北京 100083;
    3. 北京航空航天大学 航空科学与工程学院, 北京 100083

收稿日期: 2019-05-14

  修回日期: 2019-06-27

  网络出版日期: 2019-07-22

基金资助

国家自然科学基金(11502012,11850410440,11772033)

Characteristics of low frequency broadband noise for leading-edge droop nose measured in a far-field

  • LU Weishuang ,
  • LIU Peiqing ,
  • GUO Hao
Expand
  • 1. Key Laboratory of Aero-acoustics, Ministry of Industry and Information Technology, Beihang University, Beijing 100083, China;
    2. Key Laboratory of Fluid Mechanics, Ministry of Education, Beihang University, Beijing 100083, China;
    3. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2019-05-14

  Revised date: 2019-06-27

  Online published: 2019-07-22

Supported by

National Natural Science Foundation of China(11502012,11850410440,11772033)

摘要

为了研究前缘下垂远场噪声特性,在北京航空航天大学D5风洞内开展前缘下垂增升构型远场噪声特性试验研究,并利用计算流体力学的方法补充提供增升构型附近流场信息。增升构型模型为前缘下垂搭配后缘襟翼,为了消除襟翼噪声干扰,后缘襟翼收起。研究表明,前缘下垂增升构型远场噪声频谱以宽频噪声为主。随着来流速度的增加,宽频幅值逐渐增加。其中,低频(200~400 Hz)宽频噪声幅值经过马赫数5次方归一化后吻合良好。随着迎角的增加,中高频宽频幅值变化不大,但是,低频宽频噪声幅值变化明显,先降低再增加。通过分析在不同迎角下,有效迎风面积、压力面DSM Dyneema布变形以及两者共同对远场噪声幅值的影响,发现远场低频宽频噪声幅值变化规律与模型附近流场变化有关。

本文引用格式

陆维爽 , 刘沛清 , 郭昊 . 前缘下垂远场低频宽频噪声特性[J]. 航空学报, 2019 , 40(10) : 123152 -123152 . DOI: 10.7527/S1000-6893.2019.23152

Abstract

An experimental study on the far-field noise characteristics of leading-edge droop nose is conducted in Beihang University D5 wind tunnel. The computational fluid dynamics method is used to obtain the flow information near the high-lift device. A two-dimensional high-lift configuration model with a leading-edge droop nose is used, and the trailing-edge flap is stowed to eliminate the flap noise interference. The results show that broadband noise dominates the far-field noise spectrum of the high-lift configuration with a leading-edge droop nose. With the increase of freestream velocity, the broadband amplitude increases gradually. Among that, the amplitude of the low frequency (200-400 Hz) broadband noise is well-matched after normalization by the 5 Mach number power law. With the increase of angle of attack, the mid to high frequency broadband noise does not significantly change, but the amplitude of low frequency broadband noise changes significantly that first decreases and then increases. The analyses of the effect of effective windward area, DSM cloth deformation and their combined effects on the far-field noise amplitude at different angles of attack find that the amplitude variation of the low frequency broadband noise is related to the flow characteristics near the model.

参考文献

[1] DOBRZYNSKI W. Almost 40 years of airframe noise research:What did we achieve?[J]. Journal of Aircraft, 2010, 47(2):353-367.
[2] XU C C, CHO H M. Analysis on the noise reduction of engine with air intake resonator in engine intake system[J]. International Journal of Engineering & Technology, 2018, 10(1):149-153.
[3] GUO Y P, JOSHI M C. Noise characteristics of aircraft high lift systems[J]. AIAA Journal, 2003, 41(7):1247-1256.
[4] 朱自强,兰世隆. 民机机体噪声及其降噪研究[J]. 航空学报,2015,36(2):406-421. ZHU Z Q, LAN S L. Study of airframe noise and its reduction for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(2):406-421(in Chinese).
[5] TAKEDA K, ASHCROFT G, ZHANG X, et al. Unsteady aerodynamics of slat cove flow in a high-lift device configuration:AIAA-2001-0706[R]. Reston, VA:AIAA, 2001.
[6] DOBRZYNSKI W, NAGAKURA K, GEHLHAR B, et al. Airframe noise studies on wings with deployed high-lift devices:AIAA-1998-2337[R]. Reston, VA:AIAA, 1998.
[7] TERRACOL M, MANOHA E, LEMOINE B. Investigation of the unsteady flow and noise generation in a slat cove[J]. AIAA Journal, 2016, 54(2):469-489.
[8] 李伟鹏. 大型客机增升装置噪声机理与噪声控制综述[J]. 空气动力学学报, 2018, 36(3):372-384, 409. LI W P.Review of the mechanism and noise control of high-lift device noise[J].Acta Aerodynamica Sinica, 2018, 36(3):372-384, 409(in Chinese).
[9] 卢清华, 陈宝. 基于LES方法的增升装置气动噪声特性分析[J].空气动力学学报,2016,34(4):448-455. LU Q H, CHEN B. Analysis of aeroacoustics characteristics of high lift device using LES method[J]. Acta Aerodynamica Sinica,2016,34(4):448-455(in Chinese).
[10] ZHANG Y, O'NEILL A, CATTAFESTA L N., et al. Assessment of noise reduction concepts for leading-edge slat noise:AIAA-2018-3461[R]. Reston, VA:AIAA, 2018.
[11] MONNER H P, KINTSCHER M, LORKOWSKI T, et al. Design of a smart droop nose as leading edge high lift system for transportation aircraft:AIAA-2009-2128[R]. Reston, VA:AIAA, 2009.
[12] PANTELAKIS S, KINTSCHUER M, WIEDEMANN M, et al. Design of a smart leading edge device for low speed wind tunnel tests in the European project SADE[J]. International Journal of Structural Integrity, 2011, 2(4):383-405.
[13] POTTPOLLENSKE M, WILD J, BERTSCH L. Aerodynamic and acoustic design of silent leading edge devices:AIAA-2014-2076[R]. Reston, VA:AIAA, 2014.
[14] ANDREOU C, GRAHAM W, SHIN H C. Aeroacoustic study of airfoil leading edge high-lift devices:AIAA-2006-2515[R]. Reston, VA:AIAA, 2006.
[15] ANDREOU C, GRAHAM W, SHIN H C. Aeroacoustic comparison of airfoil leading edge high-lift geometries and supports:AIAA-2007-0230[R]. Reston, VA:AIAA, 2007.
[16] 杨小权, 孙一峰,杨士普,等. 前缘下垂增升装置气动特性和噪声特性研究[C]//第九届全国流体力学学术会议. 北京:中国力学学会, 2016:400. YANG X Q, SUN Y F, YANG S P, et al. Study on aerodynamic characteristics and noise characteristics of leading edge high-lift device[C]//The 9th National Conference on Fluid Mechanics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2016:400(in Chinese).
[17] LIU P, XING Y, GUO H, et al. Design and performance of a small-scale aeroacoustic wind tunnel[J]. Applied Acoustics, 2017, 116:65-69.
[18] DEVENPORT W J, BURDISSO R A, BORGOLTZ A, et al. The Kevlar-walled anechoic wind tunnel[J]. Journal of Sound and Vibration, 2013, 332(17):3971-3991.
[19] LU W S, LIU P Q, GUO H. Experimental study on aerodynamic noise characteristics of high-lift configuration with a kind of variable gap leading-edge slat[C]//Proceedings of Meetings on Acoustics. Melville, NY:Acoustical Society of America, 2018:045001.
[20] LU W, TIAN Y, LIU P. Aerodynamic optimization and mechanism design of flexible variable camber trailing-edge flap[J]. Chinese Journal of Aeronautics, 2017, 30(3):988-1003.
[21] CHIN V D, PETERS D W, SPAID F W, et al. Flow field measurements about a multi-element airfoil at high Reynolds numbers:AIAA-1993-3137[R]. Reston, VA:AIAA, 1993.
[22] CHEN P. Identification and attenuation of slat noise[D]. Southampton:University of Southampton, 2012.
[23] DOBRZYNSKI W, POTT-POLLENSKE M. Slat noise source studies for far field noise prediction:AIAA-2001-2158[R]. Reston, VA:AIAA, 2001.
[24] MENDOZA J, BROOKS T, HUMPHREYS W. Aeroacoustic measurements of a wing/slat model:AIAA-2002-2604[R]. Reston, VA:AIAA,2002.
[25] GILL J R, ZHANG X, JOSEPH P. Effects of real airfoil geometry on leading edge gust interaction noise:AIAA-2013-2203[R]. Reston, VA:AIAA, 2013.
[26] BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self-noise and prediction:NASA-RP-1218[R]. Washington, D.C.:NASA,1989.
[27] SARRADJ E, FRITZSCHE C, GEYER T, et al. Acoustic and aerodynamic design and characterization of a small-scale aeroacoustic wind tunnel[J]. Applied Acoustics, 2009, 70:1073-1080.
文章导航

/