电子电气工程与控制

无导引头也无惯导导弹的协同制导

  • 赵建博 ,
  • 杨树兴 ,
  • 熊芬芬
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 西安现代控制技术研究所, 西安 710065

收稿日期: 2019-05-30

  修回日期: 2019-06-19

  网络出版日期: 2019-07-15

基金资助

国家自然科学基金(11532002);红箭创新基金(BQ203-HYJJ-Q2018002)

Cooperative guidance for seeker-less missile without inertial navigation system

  • ZHAO Jianbo ,
  • YANG Shuxing ,
  • XIONG Fenfen
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Xi'an Modern Control and Technology Institute, Xi'an 710065, China

Received date: 2019-05-30

  Revised date: 2019-06-19

  Online published: 2019-07-15

Supported by

National Natural Science Foundation of China (11532002); Hongjian Innovation Foundation of China (BQ203-HYJJ-Q2018002)

摘要

为了在不依赖导弹间实时通信与导弹绝对位置信息的情况下实现无导引头也无惯导导弹的"发射后不管",考虑为无导引头也无惯导导弹安装两个捷联探测器,从而可对有导引头导弹上的两个特定目标点进行探测。在此基础上,针对静止点目标分别采用一般的负反馈控制方法以及有限时间收敛原理设计了2种协同末制导律,并针对静止面目标采用动态逆控制设计了1种协同末制导律。上述协同制导律均可在有导引头导弹命中目标前实现无导引头也无惯导导弹的速度方向指向其攻击目标,而此后无导引头也无惯导导弹只需要作直线运动即可命中其攻击目标。仿真结果验证了上述协同制导律的有效性以及优势。

本文引用格式

赵建博 , 杨树兴 , 熊芬芬 . 无导引头也无惯导导弹的协同制导[J]. 航空学报, 2019 , 40(10) : 323191 -323191 . DOI: 10.7527/S1000-6893.2019.23191

Abstract

This paper intends to achieve the fire-and-forget attack of the seeker/INS-less missile without relying on the real-time communication and the information of absolute positions of missiles. Two onboard strap-down finders are installed on a seeker-less missile without the Inertial Navigation System (INS) to detect the two specific targets on a seeker-guided missile. Based on these, two cooperative terminal guidance laws are derived for a stationary point target by common negative feedback and finite-time convergence approaches. Another cooperative terminal guidance law is derived for a stationary surface target by the dynamic inverse control. All the aforementioned guidance laws enable the velocity direction of the seeker/INS-less missile point to its attack target before the seeker-guided hits its target. Hereafter, the seeker/INS-less missile can fly straightly to achieve a precise hit. Simulations are conducted to verify the effectiveness and advantages of the proposed guidance laws.

参考文献

[1] SIOURIS G M. Missile guidance and control systems[M]. New York:Springer-Verlag New York, Inc, 2004:157-165.
[2] ZHANG Y, TANG S J, GUO J. An adaptive fast fixed-time guidance law with an impact angle constraint for intercepting maneuvering targets[J]. Chinese Journal of Aeronautics, 2018, 31(6):1327-1344.
[3] SI Y J, SONG S M. Three-dimensional adaptive finite-time guidance law for intercepting maneuvering targets[J]. Chinese Journal of Aeronautics, 2017, 30(6):1985-2003.
[4] SONG J H, SONG S M, XU S L. Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence[J]. Aerospace Science and Technology, 2017, 67:193-205.
[5] KUMAR S R, GHOSE D. Three-dimensional impact angle guidance with coupled engagement dynamics[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2017, 231(4):621-641.
[6] WANG X H, WANG J Z. Partial integrated guidance and control with impact angle constraints[J]. Journal of Guidance Control and Dynamics, 2015, 38(5):925-936.
[7] HE S M, LIN D F, WANG J. Continuous second-order sliding mode based impact angle guidance law[J]. Aerospace Science and Technology, 2015, 41:199-208.
[8] KUMAR S R, RAO S, GHOSE D. Nonsingular terminal sliding mode guidance with impact angle constraints[J]. Journal of Guidance Control and Dynamics, 2014, 37(4):1114-1130.
[9] LIU X, HUANG W, DU L. An integrated guidance and control approach in three-dimensional space for hypersonic missile constrained by impact angles[J]. ISA Transactions, 2017, 66:164-175.
[10] KUMAR G S, GHOSH R, GHOSE D, et al. Guidance of seekerless interceptors using innovation covariance based tuning of Kalman filters[J]. Journal of Guidance Control and Dynamics, 2017, 40(3):603-614.
[11] KUMAR G S, GHOSE D, VENGADARAJAN A. An integrated estimation/guidance approach for seeker-less interceptors[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2015, 229(5):891-905.
[12] 赵启伦, 陈建,董希旺,等.拦截高超声速目标的异类导弹协同制导律[J]. 航空学报, 2016, 37(3):936-948. ZHAO Q L, CHEN J, DONG X W, et al. Cooperative guidance law for heterogeneous missiles intercepting hypersonic weapon[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):936-948(in Chinese).
[13] ZHAO E, WANG S, CHAO T, et al. Multiple missiles cooperative guidance based on leader-follower strategy[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway, NJ:IEEE Press, 2014:1163-1167.
[14] ZHAO J B, YANG S X, XIONG F F. Cooperative guidance of seeker-less missile with two leaders[J]. Aerospace Science and Technology, 2019, 88:308-315.
[15] ZHAO J B, YANG S X, XIONG F F. Cooperative guidance of seeker-less missile considering localization error[J]. Chinese Journal of Aeronautics, 2019, 32(8):1933-1945.
[16] 赵建博, 杨树兴,熊芬芬. 基于领弹-从弹架构的无导引头导弹协同定位与制导方法[J]. 兵工学报, 2019, 40(4):673-679. ZHAO J B, YANG S X, XIONG F F. Cooperative localization and guidance for seeker-less missile based on leader-follower framework[J]. Acta Armamentarii, 2019, 40(4):673-679(in Chinese).
[17] ZHAO J B, XIONG F F. Cooperative guidance of seeker-less missiles for precise hit[J]. International Journal of Aerospace Engineering, 2019, Article ID:8939213.
[18] LYU S, ZHU Z H, TANG S, et al. Hybrid cooperative guidance law for active aircraft defense against a guided missile[J]. Journal of Guidance Control and Dynamics, 2018, 41(2):531-537.
[19] HOU D L, WANG Q, SUN X J, et al. Finite-time cooperative guidance laws for multiple missiles with acceleration saturation constraints[J]. IET Control Theory and Applications, 2015, 9(10):1525-1535.
[20] ZHAO J B, YANG S X. Integrated cooperative guidance framework and cooperative guidance law for multi-missiles[J]. Chinese Journal of Aeronautics, 2018, 31(3):546-555.
[21] WEN Q Q, XIA Q L, SU W X. A parameter design strategy for seeker's field-of-view constraint in impact angle guidance[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2015, 229(13):2389-2396.
[22] ZHANG Y A, WANG X L, WU H L. Impact time control guidance law with field of view constraint[J]. Aerospace Science and Technology, 2014, 39:361-369.
[23] BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3):751-766.
[24] JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance Control and Dynamics, 2010, 33(1):275-280.
[25] ZHAO J B, YANG S X, XIONG F F. Cooperative guidance against stationary and non-maneuvering targets[C]//2018 IEEE/CSAA Guidance, Navigation and Control Conference. Piscataway, NJ:IEEE Press, 2018:141-146.
文章导航

/