流体力学与飞行力学

一种改进的声反卷积相关声源定位方法

  • 魏龙 ,
  • 秦朝红 ,
  • 任方 ,
  • 张忠 ,
  • 黎敏 ,
  • 刘学
展开
  • 1. 北京强度环境研究所 可靠性与环境工程技术重点实验室, 北京 100076;
    2. 北京科技大学 钢铁共性技术协同创新中心, 北京 100083;
    3. 北京科技大学 流体与材料相互作用教育部重点实验室, 北京 100083;
    4. 中国人民解放军91550部队, 大连 116023

收稿日期: 2019-04-19

  修回日期: 2019-06-24

  网络出版日期: 2019-07-15

基金资助

国家自然科学基金(51805036,51575038,61801482)

An improved acoustic deconvolution method for localizing correlated sound sources

  • WEI Long ,
  • QIN Zhaohong ,
  • REN Fang ,
  • ZHANG Zhong ,
  • LI Min ,
  • LIU Xue
Expand
  • 1. Science and Technology on Reliability and Environment Engineering Laboratory, Beijing Institute of Structure and Environment Engineering, Beijing 100076, China;
    2. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
    3. Key Laboratory of Fluid Interaction with Material, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China;
    4. PLA 91550 Unit, Dalian 116023, China

Received date: 2019-04-19

  Revised date: 2019-06-24

  Online published: 2019-07-15

Supported by

National Natural Science Foundation of China (51805036,51575038,61801482)

摘要

基于传声器阵列的声源定位算法的性能优劣决定了气动噪声试验检测中气动噪声源定位成像的准确性。为了提高相关声源定位方法的稳健性和准确性,提出一种改进的声反卷积相关声源定位方法——D-MACS(Developed-Mapping of Acoustic Correlated Sources)方法。该方法的特点是:在传统MACS方法的基础上,将声反卷积模型进行改进,使模型体现出声场空间扫描点声压互谱矩阵与互谱波束形成输出矩阵之间的数学关系,其最终获得的声源定位结果,能够提高MACS方法声源定位辨识的稳健性和准确性。通过仿真信号研究和声学风洞环境中的声源定位试验研究,比较了DAS(Delay And Sum beamformming)、DAMAS-C(Deconvolution Approach for the Mapping of Acoustic Correlated Sources)、MACS和D-MACS这4种方法的声源定位性能,验证了D-MACS方法在声源定位性能上的优势。

本文引用格式

魏龙 , 秦朝红 , 任方 , 张忠 , 黎敏 , 刘学 . 一种改进的声反卷积相关声源定位方法[J]. 航空学报, 2019 , 40(11) : 123100 -123100 . DOI: 10.7527/S1000-6893.2019.23100

Abstract

In aerodynamic noise tests, the performance of sound source localization algorithm determines the accuracy of the localization of aeroacoustic sources. In this paper, D-MACS(Developed-Mapping of Acoustic Correlated Sources), an improved acoustic deconvolution method for the localization of the correlated sound sources, is proposed to enhance the robustness and accuracy when localizing the acoustic correlated sources. The characteristics of this new method are as follows. Base on the traditional MACS algorithm, the acoustic deconvolution model is adapted, forming a mathematical relationship between the cross-spectrum beamforming matrix and the covariance matrix of sound pressure at the observation points. And the sound source localization result obtained by this proposed method can increase the robustness and accuracy of the MACS method. Using the simulated sound source signals and that of the experimental data obtained in an acoustic wind tunnel, four methods including DAS(Delay And Sum beamformming),DAMAS-C(Deconvolution Approach for the Mapping of Acoustic Correlated Sources), MACS and D-MACS are compared in terms of their ability to localize the sound sources, verifying the superiority of D-MACS in sound source localization.

参考文献

[1] SODERMAN P T, NOBLE S C. Directional microphone array for acoustic studies of wind tunnel models[J]. Journal of Aircraft, 1975, 12(3):168-173.
[2] BILLINGSLEY J, KINNS R. The acoustic telescope[J]. Journal of Sound and Vibration, 1976, 48(4):485-510.
[3] BROOKS T F, MARCOLINI M A. A directional array approach for the measurement of rotor noise source distributions with controlled spatial resolution[J]. Journal of Sound and Vibration, 1987, 112(1):192-197.
[4] HUMPHREYS W M, BROOKS T F, HUNTER W W, et al. Design and use of microphone directional arrays for aeroacoustic measurements:AIAA-1998-0471[R]. Reston, VA:AIAA, 1998.
[5] BROOKS T F, HUMPHREYS W M. Effect of directional array size on the measurement of airframe noise components:AIAA-1999-1958[R]. Reston, VA:AIAA, 1999.
[6] MICHEL U, BARSIKOW B, HAVERICH B, et al. Investigation of airframe and jet noise in high-speed flight with a microphone array:AIAA-1997-1596[R]. Reston, VA:AIAA, 1997.
[7] PORTEOUS R, PRIME Z, DOOLAN C J, et al. Three-dimensional beamforming of dipolar aeroacoustic sources[J]. Journal of Sound and Vibration, 2015, 355:117-134.
[8] PADOIS T, GAUTHIER P, BERRY A. Inverse problem with beamforming regularization matrix applied to sound source localization in closed wind-tunnel using microphone array[J]. Journal of Sound and Vibration, 2014, 333(25):6858-6868.
[9] HUMPHREYS W M, BROOKS T F, BAHR C J, et al. Development of a microphone phased array capability for the Langley 14-by 22-foot subsonic tunnel:AIAA-2014-2343[R]. Reston, VA:AIAA, 2014.
[10] PANDA J, OSHER R N, PROTER B J. Identification of noise sources during rocket engine test firings and a rocket launch using a microphone phased-array:NASA/TM-2013-216625[R]. Washington, D.C.:NASA, 2013.
[11] 乔渭阳, MICHEL U. 二维传声器阵列测量技术及其对飞机进场着陆过程噪声的实验研究[J]. 声学学报, 2001, 26(2):161-168. QIAO W Y, MICHEL U. A study on landing aircraft noise based on the fly-over measurements with a planar microphone array[J]. Acta Acustica, 2001, 26(2):161-168(in Chinese).
[12] 孙爽, 乔渭阳,黄晓聃. 数控传声器阵列反卷积法对飞机噪音的应用与实验研究[J].应用声学. 2012,31(4):294-302. SUN S, QIAO W Y, HUANG X D. A study of the experiment and the application to the plane with inverse method of numerical control microphone array[J]. Applied Acoustics, 2012,31(4):294-302(in Chinese).
[13] 宁方立, 张超,潘峰,等,飞机起落架噪声源定位的压缩感知算法[J]. 航空学报, 2018, 39(5):121810. NING F L, ZHANG C, PAN F, et al. Compressive sensing algorithm for sound source location of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121810(in Chinese).
[14] 陈正武, 王勋年,李征初,等. 基于声学风洞的麦克风阵列测试技术应用研究[J]. 实验流体力学, 2012,26(3):84-90. CHEN Z W, WANG X N, LI Z C, et al. Application investigation of microphone array measuring and testing technique in anechoic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3):84-90(in Chinese).
[15] HUANG X, BAI L, VINOGRADOV I, et al. Adaptive beamforming for array signal processing in aeroacoustic measurements[J]. The Journal of the Acoustical Society of America, 2012, 131(3):2152-2161.
[16] 周家检, 郝璇,张卫民,等.相阵列技术在民机机体气动噪声研究中的应用[J].空气动力学学报,2016,34(1):91-97. ZHOU J J, HAO X, ZHANG W M, et al. Application of phased array technique in the research of civil airplane airframe noise[J]. Acta Aerodynamica Sinica, 2016, 34(1):91-97(in Chinese).
[17] THOMAS B, WILLIAM H. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration, 2006, 294(4-5):856-879.
[18] WEI M, XUN L. Improving the efficiency of DAMAS for sound source localization via wavelet compression computational grid[J]. Journal of Sound and Vibration, 2017, 395:341-353.
[19] SIJTSMA P. CLEAN based on spatial source coherence:AIAA-2007-3436[R]. Reston, VA:AIAA, 2007.
[20] CHU Z G, ZHAO S Y, YANG Y, et al. Deconvolution using CLEAN-SC for acoustic source identification with spherical microphone arrays[J]. Journal of Sound and Vibration, 2019, 440:161-173.
[21] MATHEW L, STUART B. Automatic 3D scanning surface generation for microphone array acoustic imaging[J]. Applied Acoustics, 2014, 76:230-237.
[22] 杨洋, 褚志刚,基于CLEAN-SC清晰化波束形成的汽车前围板隔声薄弱部位识别[J]. 声学技术, 2015,43(5):449-456. YANG Y, CHU Z G. Weak position identification of sound insulation for car dash panel based on CLEAN-SC clearness beamforming[J]. Technical Acoustics, 2015, 43(5):449-456(in Chinese).
[23] YARDIBI T, LI J, STOICA P, et al. A covariance fitting approach for correlated acoustic source mapping[J]. The Journal of the Acoustical Society of America, 2010, 127(5):2920-2931.
[24] THOMAS B, WILLIAM H. Extension of DAMAS phased array processing for spatial coherence determination (DAMAS-C):AIAA-2006-2654[R]. Reston, VA:AIAA, 2006.
[25] YARDIBI T, LI J, STOICA P, et al. Sparsity constrained deconvolution approaches for acoustic source mapping[J]. The Journal of the Acoustical Society of America, 2008, 123(5):2631-2642.
[26] PATRICIO A R, RICARDO A B, WING F N. Noise source localization and optimization of phased-array results[J]. AIAA Journal, 2009, 47(11):2520-2533.
[27] LI Y W, LI M, YANG D B, et al. Research of the improved mapping of acoustic correlated sources method[J]. Applied Acoustics, 2019, 145:290-304.
[28] FLEURY V, BULTE J, DAVY R. Determination of acoustic directivity from microphone array measurements using correlated monopoles:AIAA-2008-2855[R]. Reston, VA:AIAA, 2008.
[29] WEI L, LI M, QIN S, et al. Sound source localization method in an environment with flow based on Amiet-IMACS[J]. Mechanical Systems and Signal Processing, 2017,88:240-252.
[30] CVX Resarch Inc. CVX:Matlab software for disciplined convex programming, version 2.0[EB/OL]. (2018-12)[2019-4-20]. http://cvxr.com/cvx.
[31] GRANT M, BOYD S. Graph implementations for nonsmooth convex programs[M]//Recent advances in learning and control. Heidelberg:Springer, 2008:95-110.
[32] AMIET R K. Refraction of sound by a shear layer[J]. Journal of Sound and Vibration, 1978, 58(4):467-482.
文章导航

/