为了解决空时自适应处理(Space-Time Adaptive Processing,STAP)对足量平稳训练快拍的要求,给出了一种设计STAP张量波束成形器的新算法——空时自适应处理张量子波束合成(TSS-STAP)法。分析表明:STAP中所需要的张量波束成形器,可首先在张量的各个子维度上分别进行子波束成形器的设计,然后再由张量的外积运算合成各子波束成形器而得到。进一步分析表明:由于本文算法可在较低自由度(DoF)的子维度上对张量波束成形器进行设计,因此降低了设计所需要的训练快拍数和计算复杂度,同时也实现了有效的去相关处理,使得其在非均匀杂波环境下有更好的目标检测性能。在仿真实验中,所提算法有效提升了目标检测结果,同时降低了目标检测所消耗的时间。
In order to solve the requirement of Space-Time Adaptive Processing (STAP) for a sufficient number of stationary training snapshots. In this paper, a new method, named as Tensor Sub-beam Synthesis-STAP (TSS-STAP), for designing STAP tensor beamformer is proposed. Analysis shows that the tensor beamformer required in STAP can be synthesized by the tensor outer product operation of the sub-beamformers, where each of the sub-beamfomer is designed in the each sub-dimension of a tensor, since the proposed beamformer is designed in the sub-dimension of a tensor which has lower Degrees of Freedom (DoF), so that the required training snapshots and computational complexity are reduced. Moreover, it is also shows that the proposed beamformer can effectively do decorrelation processing, so that a better target detection performance in non-uniform clutter environment is obtained. Simulation results show that the proposed method effectively improves the target detection result and reduces the time consumed by the target detection.
[1] BRENNAN L E, REED L S. Theory of adaptive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(2):237-252.
[2] REED I S, MALLETT J D, BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6):853-863.
[3] KIRSTEINS I P, TUFTS D W. Adaptive detection using low rank approximation to a data matrix[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1):55-67.
[4] RICHARDSON P G. STAP covariance matrix structure and its impact on clutter plus jamming suppression solutions[J]. Electronics Letters, 2001, 37(2):118-119.
[5] SEN S. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8):1510-1523.
[6] PECKHAM C D, HAIMOVICH A M, AYOUB T F, et al. Reduced-rank STAP performance analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2):664-676.
[7] GINOLHAC G, FORSTER P. Performance analysis of a robust low-rank STAP filter in low-rank Gaussian clutter[C]//2010 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE Press, 2010:2746-2749.
[8] BOIZARD M, GINOLHAC G, PASCAL F, et al. A new tool for multidimensional low-rank STAP filter:Cross HOSVD[C]//2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO). Piscataway, NJ:IEEE Press, 2012:1324-1328.
[9] HAARDT M, ROEMER F, DEL G G. Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems[J]. IEEE Transactions on Signal Processing, 2008, 56(7):3198-3213.
[10] BRIGUI F, BOIZARD M, GINOLHAC G, et al. New low-rank filters for MIMO-STAP based on an orthogonal tensorial decomposition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3):1208-1220.
[11] KOLDA T G, BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3):455-500.
[12] 李阳. 张量理论及其在阵列处理中的应用研究[D]. 上海:复旦大学, 2014:51-72. LI Y. Tensor theory and its application to array signal processing[D]. Shanghai:Fudan University, 2014:51-72(in Chinese).
[13] MELVIN W L. A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1):19-35.
[14] SALAS-NATERA M A, RODRÍGUEZ-OSORIO R M, HARO ARIET L D, et al. Novel reception and transmission calibration technique for active antenna array based on phase center estimation[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10):5511-5522.
[15] LI J, JIN M, ZHENG Y. Transmit and receive array gain-phase error estimation in bistatic MIMO radar[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14:32-35.
[16] LIU A, SUN H, TEH K C, et al. Robust space-time adaptive processing for nonhomogeneous clutter in the presence of model errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1):155-168.
[17] AHMAD M I, LIU Z W, XU Y G. Minimum variance beamforming using polarization sensitive array[C]//2008 11th IEEE Singapore International Conference on Communication Systems. Piscataway, NJ:IEEE Press, 2008:489-492.
[18] 虞翔. 张量波束成形的理论及其应用研究[D]. 上海:复旦大学, 2017:11-24. YU X. Tensor beamforming theory and its application[D]. Shanghai:Fudan University. 2017:11-24(in Chinese).
[19] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8):1408-1418.
[20] GABRIEL W F. Using spectral estimation techniques in adaptive processing antenna systems[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3):291-300.
[21] 杨明. 矩阵论[M]. 武汉:华中科技大学出版社, 2003:71-75. YANG M. Matrix theory[M]. Wuhan:Huazhong University of Science & Technology Press, 2003:71-75(in Chinese).
[22] DAVIE A M, STOTHERS A J. Improved bound for complexity of matrix multiplication[J]. Proceedings of the Royal Society of Edinburgh Section A:Mathematics, 2013, 143(2):351-369.
[23] 张燕. 地面运动目标指示雷达空时自适应处理(STAP)算法研究[D]. 北京:中国科学院大学, 2010:21-32 ZHANG Y. Study of space-time adaptive processing algorithms on ground moving target indication radar[D]. Beijing:University of Chinese Academy of Sciences, 2010:21-32(in Chinese).
[24] 余英林. 数字图像处理与模式识别[M]. 广州:华南理工大学出版社, 1990:91-94. YU Y L. Digital image processing and pattern recognition[M]. Guangzhou:South China University of Technology Press, 1990:91-94(in Chinese).