[1] COLIER F, THOMAS R, BURLEY C, et al. Environmentally responsible aviation-Real solutions for environmental challenges facing aviation[C]//27th Congress of the International Sciences 2010. Stockholm:ICAS Secretariat, 2010:300-315.
[2] SEITZ A, KRUSE M, WUNDERLICH T, et al. The DLR project LamAiR:Design of a NLF forward swept wing for short and medium range transport application[C]//29th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2011.
[3] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).
[4] TAO J, SUN G, WU G, et al. An innovative study on low surface energy micro-nano coatings with multilevel structures for laminar flow design[J]. Chinese Journal of Aeronautics, 2019, 32(3):577-584.
[5] HOLMES B J, OBARA C J, YIP L P. Natural laminar flow experiments on modern airplane surfaces:NASA TP-2256[R]. Washington, D.C.:NASA, 1984.
[6] YOUNGHANS J K, LAHTI D J. Analytical and experimental studies on natural laminar flow nacelle:AIAA-1984-0034[R]. Reston, VA:AIAA, 1984.
[7] RIEDEL H, HORSTMANN K H, RONZHEIMER A. Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology, 1998, 2(1):1-12.
[8] LIN Y J, ROBINSON T, RIORDAN D, et al. Implementation of Menter's transition model on an isolated natural laminar flow nacelle[J]. AIAA Journal, 2011, 49(4):824-835.
[9] 宋文萍, 朱震, 张坤, 等. 耦合转捩自动判断的机翼黏性绕流计算与优化设计[J]. 航空科学技术, 2015, 26(11):23-29. SONG W P, ZHU Z, ZHANG K, et al. Simulations of the viscous flow around swept wings and optimizationdesign using the RANS solver with automatic transition prediction[J]. Aeronautical Science & Technology, 2015, 26(11):23-29(in Chinese).
[10] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese).
[11] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422.
[12] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables-Part II:Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3):423-434.
[13] OWEN P R, RANDALL D G. Boundary layer transition on a sweptback wing:Tech. Memo. Aero 277[R]. Farnborough:Royal Aircraft Establishment,1952.
[14] ARNAL D, HABIBALLAH M, COUSTOLS E. Laminar instability theory and transition criteria in two and three-dimensional flow[J]. La Recherche Aerospatiale (English Edition), 1984(2):45-63.
[15] GRABE C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539.
[16] GRABE C, NIE S Y, KRUMBEIN A. Transport modeling for the prediction of crossflow transition[J]. AIAA Journal, 2018, 56(8):3167-3178.
[17] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6):1814-1822. XU J K, BAI J Q, QIAO L, et al. Transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1814-1822(in Chinese).
[18] 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3):780-789. SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):780-789(in Chinese).
[19] DU Y M, GAO Z H, WANG C, et al. Boundary-layer transition of advanced fighter wings at high-speed cruise conditions[J]. Chinese Journal of Aeronautics, 2019, 32(4):799-814.
[20] 周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报, 2017, 35(2):151-155. ZHOU H, ZHANG H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2):151-155(in Chinese).
[21] LEE C B. Possible universal transitional scenario in a flat plate boundary layer:Measurement and visualization[J]. Physical Review E, 2000, 62(3):3659.
[22] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):030802.
[23] 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报, 2017, 49(1):93-104. TONG F L, LI X L, TANG Z G. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1):93-104(in Chinese).
[24] SMITH A M O, GAMBERONI N. Transition, pressure gradient and stability theory[M]. Long Beach:Douglas Aircraft Company, 1956.
[25] INGEN J L V. A suggested semi-empirical method for the calculation of the boundary layer transition region:VTH-74[R]. Delft:Delft University of Technology, 1956.
[26] 朱震, 宋文萍, 韩忠华. 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018, 39(2):121707. ZHU Z, SONG W P, HAN Z H. Automatic transition prediction for wing-body configurations using dual eN method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121707(in Chinese).
[27] 董军, 唐海龙, 任园军. 基于eN-数据库方法复杂构型飞机转捩预测[J]. 航空计算技术, 2016, 46(5):9-12. DONG J, TANG H L, REN Y J. eN-Database transition prediction method and application to transport airplane[J]. Aeronautical Computing Technique, 2016, 46(5):9-12(in Chinese).
[28] BEGOU G, DENIAU H, VERMEERSCH O, et al. Database approach for laminar-turbulent transition prediction:Navier-Stokes compatible reformulation[J]. AIAA Journal, 2017, 55(11):1-13.
[29] 左岁寒, 杨永, 李栋. 基于线性抛物化稳定性方程的后掠翼边界层内横流稳定性研究[J]. 计算物理, 2010, 27(5):665-670. ZUO S H, YANG Y, LI D. Investigation on cross-flow instabilities in swept-wing boundary layers with linear parabolized stability equations[J]. Chinese Journal of Computational Physics, 2010, 27(5):665-670(in Chinese).
[30] 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12):122219. CHEN J, SONG W P, ZHU Z, et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122219(in Chinese).
[31] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese).
[32] SPALART P R A, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit, 1992:439.
[33] MARK L M. Transition prediction and linear stability theory[C]//In AGARD Laminar-Turbulent Transition 22 p (SEE N78-1431605-34), 1977.
[34] 周恒, 赵耕夫. 流动稳定性[M]. 北京:国防工业出版社, 2004:150-157. ZHOU H, ZHAO G F. Hydrodynamic stability[M]. Beijing:National Defense Industry Press, 2004:150-157(in Chinese).
[35] DAGENHART J R, SARIC W S. Crossflow stability and transition experiments in swept-wing flow:NASA-TP-1999-209344[R]. Washington, D.C.:NASA, 1999.
[36] TINOCO E N, BRODERSEN O, KEYE S, et al. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:CRM Cases 2 to 5[C]//55th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2017.