流体力学与飞行力学

基于双eN方法的短舱层流转捩影响因素

  • 孟晓轩 ,
  • 白俊强 ,
  • 张美红 ,
  • 王美黎 ,
  • 何小龙 ,
  • 汪辉
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 西北工业大学 无人系统技术研究院, 西安 710072;
    3. 中国商用飞机有限责任公司 上海飞机设计研究院, 上海 201210

收稿日期: 2019-04-01

  修回日期: 2019-04-25

  网络出版日期: 2019-06-14

基金资助

国家自然科学基金(11802245)

Laminar transition influencing factors of nacelle based on double eN method

  • MENG Xiaoxuan ,
  • BAI Junqiang ,
  • ZHANG Meihong ,
  • WANG Meili ,
  • HE Xiaolong ,
  • WANG Hui
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China;
    3. Shanghai Aircraft Design and Research Institute, Commercial Aircraft Corporation of China, Ltd., Shanghai 201210, China

Received date: 2019-04-01

  Revised date: 2019-04-25

  Online published: 2019-06-14

Supported by

National Natural Science Foundation of China (11802245)

摘要

发展自然层流短舱对提升现代民机的经济性和环保性具有重要意义,而对影响短舱层流转捩的因素进行研究有助于更好地开展短舱的层流设计。本文基于线性稳定性分析方法,将双eN方法同RANS方程求解器耦合,建立了一套可同时计算T-S(Tollmien-Schlichting)波和横流(CF)驻波诱导转捩的流动转捩预测方法,通过标准椭球算例验证了该方法的正确性,进而研究了来流马赫数、雷诺数、湍流度以及迎角对短舱转捩的影响。结果表明:马赫数和迎角会带来压力梯度的明显改变从而引起转捩位置发生变化;而在此构型的高雷诺数工况下,雷诺数和湍流度对转捩位置影响相对较小,转捩位置移动的区域不超过短舱长度的5%。因此在设计阶段,在高雷诺数条件下保持层流设计要尽量避免较大的逆压梯度,保持顺压梯度。

本文引用格式

孟晓轩 , 白俊强 , 张美红 , 王美黎 , 何小龙 , 汪辉 . 基于双eN方法的短舱层流转捩影响因素[J]. 航空学报, 2019 , 40(11) : 123040 -123040 . DOI: 10.7527/S1000-6893.2019.23040

Abstract

The development of natural laminar flow nacelle is of great significance to enhance the economy and environmental friendliness of modern civil transport aircrafts. The study on the laminar-to-turbulent transition influencing factors of the nacelle can better guide the design of laminar flow nacelle. Based on the linear stability analysis method, the double eN-method coupled with the RANS equation solver is used to establish an instability prediction method that can simultaneously calculate the N-factors of the induced transition of T-S (Tollmien-Schlichting) wave and cross flow. The method is verified through the spheroid with detailed experimental data. Then the influence factors including flow Mach number, Reynolds number, turbulence, and angle of attack on the transition of the nacelle are examined. The results show that the obvious change of pressure gradient caused by Mach number and angle of attack or sideslip angle will lead to the change of transition position, whereas the Reynolds number and the turbulence intensity have relatively little influence on transition position under high Reynolds number condition, because the range of transition position movement is no more than 5% of the nacelle length. Therefore, in the design stage, it is better to maintain the positive pressure gradient on the upstream of the nacelle as large as possible.

参考文献

[1] COLIER F, THOMAS R, BURLEY C, et al. Environmentally responsible aviation-Real solutions for environmental challenges facing aviation[C]//27th Congress of the International Sciences 2010. Stockholm:ICAS Secretariat, 2010:300-315.
[2] SEITZ A, KRUSE M, WUNDERLICH T, et al. The DLR project LamAiR:Design of a NLF forward swept wing for short and medium range transport application[C]//29th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2011.
[3] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).
[4] TAO J, SUN G, WU G, et al. An innovative study on low surface energy micro-nano coatings with multilevel structures for laminar flow design[J]. Chinese Journal of Aeronautics, 2019, 32(3):577-584.
[5] HOLMES B J, OBARA C J, YIP L P. Natural laminar flow experiments on modern airplane surfaces:NASA TP-2256[R]. Washington, D.C.:NASA, 1984.
[6] YOUNGHANS J K, LAHTI D J. Analytical and experimental studies on natural laminar flow nacelle:AIAA-1984-0034[R]. Reston, VA:AIAA, 1984.
[7] RIEDEL H, HORSTMANN K H, RONZHEIMER A. Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology, 1998, 2(1):1-12.
[8] LIN Y J, ROBINSON T, RIORDAN D, et al. Implementation of Menter's transition model on an isolated natural laminar flow nacelle[J]. AIAA Journal, 2011, 49(4):824-835.
[9] 宋文萍, 朱震, 张坤, 等. 耦合转捩自动判断的机翼黏性绕流计算与优化设计[J]. 航空科学技术, 2015, 26(11):23-29. SONG W P, ZHU Z, ZHANG K, et al. Simulations of the viscous flow around swept wings and optimizationdesign using the RANS solver with automatic transition prediction[J]. Aeronautical Science & Technology, 2015, 26(11):23-29(in Chinese).
[10] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese).
[11] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422.
[12] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables-Part II:Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3):423-434.
[13] OWEN P R, RANDALL D G. Boundary layer transition on a sweptback wing:Tech. Memo. Aero 277[R]. Farnborough:Royal Aircraft Establishment,1952.
[14] ARNAL D, HABIBALLAH M, COUSTOLS E. Laminar instability theory and transition criteria in two and three-dimensional flow[J]. La Recherche Aerospatiale (English Edition), 1984(2):45-63.
[15] GRABE C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539.
[16] GRABE C, NIE S Y, KRUMBEIN A. Transport modeling for the prediction of crossflow transition[J]. AIAA Journal, 2018, 56(8):3167-3178.
[17] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6):1814-1822. XU J K, BAI J Q, QIAO L, et al. Transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1814-1822(in Chinese).
[18] 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3):780-789. SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):780-789(in Chinese).
[19] DU Y M, GAO Z H, WANG C, et al. Boundary-layer transition of advanced fighter wings at high-speed cruise conditions[J]. Chinese Journal of Aeronautics, 2019, 32(4):799-814.
[20] 周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报, 2017, 35(2):151-155. ZHOU H, ZHANG H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2):151-155(in Chinese).
[21] LEE C B. Possible universal transitional scenario in a flat plate boundary layer:Measurement and visualization[J]. Physical Review E, 2000, 62(3):3659.
[22] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):030802.
[23] 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报, 2017, 49(1):93-104. TONG F L, LI X L, TANG Z G. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1):93-104(in Chinese).
[24] SMITH A M O, GAMBERONI N. Transition, pressure gradient and stability theory[M]. Long Beach:Douglas Aircraft Company, 1956.
[25] INGEN J L V. A suggested semi-empirical method for the calculation of the boundary layer transition region:VTH-74[R]. Delft:Delft University of Technology, 1956.
[26] 朱震, 宋文萍, 韩忠华. 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018, 39(2):121707. ZHU Z, SONG W P, HAN Z H. Automatic transition prediction for wing-body configurations using dual eN method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121707(in Chinese).
[27] 董军, 唐海龙, 任园军. 基于eN-数据库方法复杂构型飞机转捩预测[J]. 航空计算技术, 2016, 46(5):9-12. DONG J, TANG H L, REN Y J. eN-Database transition prediction method and application to transport airplane[J]. Aeronautical Computing Technique, 2016, 46(5):9-12(in Chinese).
[28] BEGOU G, DENIAU H, VERMEERSCH O, et al. Database approach for laminar-turbulent transition prediction:Navier-Stokes compatible reformulation[J]. AIAA Journal, 2017, 55(11):1-13.
[29] 左岁寒, 杨永, 李栋. 基于线性抛物化稳定性方程的后掠翼边界层内横流稳定性研究[J]. 计算物理, 2010, 27(5):665-670. ZUO S H, YANG Y, LI D. Investigation on cross-flow instabilities in swept-wing boundary layers with linear parabolized stability equations[J]. Chinese Journal of Computational Physics, 2010, 27(5):665-670(in Chinese).
[30] 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12):122219. CHEN J, SONG W P, ZHU Z, et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122219(in Chinese).
[31] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese).
[32] SPALART P R A, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit, 1992:439.
[33] MARK L M. Transition prediction and linear stability theory[C]//In AGARD Laminar-Turbulent Transition 22 p (SEE N78-1431605-34), 1977.
[34] 周恒, 赵耕夫. 流动稳定性[M]. 北京:国防工业出版社, 2004:150-157. ZHOU H, ZHAO G F. Hydrodynamic stability[M]. Beijing:National Defense Industry Press, 2004:150-157(in Chinese).
[35] DAGENHART J R, SARIC W S. Crossflow stability and transition experiments in swept-wing flow:NASA-TP-1999-209344[R]. Washington, D.C.:NASA, 1999.
[36] TINOCO E N, BRODERSEN O, KEYE S, et al. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:CRM Cases 2 to 5[C]//55th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2017.
文章导航

/