探究振动环境中管径为1/4 in的民机液压直管的最佳压接修理尺寸。首先,建立压接修理民机液压直管与流体的有限元模型,在ANSYS Workbench中对该模型进行有限元仿真分析得到其前6阶固有频率;然后,用三综合振动试验台对压接修理民机液压直管进行扫频振动试验,得到其前6阶固有频率,将试验结果平均值与仿真结果进行对比,结果误差较小且曲线拟合良好,验证了有限元仿真分析的合理性;最后,对压接修理民机液压管路进行受力分析,并以压制区域公差和压接长度为变量分别对压接修理民机液压直管进行固有频率、最大应力以及沿Y、Z轴方向的最大位移响应进行分析。结果表明:压制区域公差为4 mm、压接长度为39 mm时,管路的固有频率较大,应力及位移响应较小,此时,最大应力及位移响应集中分布于压接接头处,且与受力分析结果一致。
This paper explores the optimum repairing dimension of hydraulic straight pipes of civil aircraft with diameter of 1/4 in vibration environment. Firstly, the finite element model for hydraulic straight pipe and fluid of civil aircraft is established, and the first six natural frequencies are obtained by the finite element simulation analysis in ANSYS Workbench. Then the first six natural frequencies of the hydraulic straight pipe of civil aircraft are obtained by sweeping frequency vibration test with three comprehensive vibration test benches.The comparison of the average of the test results with the simulation results shows that the error is small with good curve fitting, which verifies the rationality of the simulation analysis. Finally, the stress analysis of the pressure-joint repair pipeline is carried out, and the natural frequency, the maximum stress, and the maximum displacement response along the Y and Z axes of the pressure-joint repair civil aircraft hydraulic straight pipe are analyzed with the tolerance of the pressure area and the length of the pressure-joint as variables. The results show that when the tolerance of pressing zone is 4 mm and the length of pressing joint is 39 mm, the natural frequency of the pipeline is relatively large and the response of stress and displacement is relatively small. At this time, the maximum stress and displacement response are concentrated at the joint, which is consistent with the results of stress analysis.
[1] 周红, 刘永寿, 邵小军, 等.飞机液压管路冲击响应分析[J]. 航空计算技术, 2010, 40(4):1-3. ZHOU H, LIU Y S, SHAO X J, et al. Hammer response analysis in airplane hydraulic pipeline[J]. Aeronautical Computing Technique, 2010, 40(4):1-3(in Chinese).
[2] JIUJING M Z. Study on pulsation of piping system of reciprocating compressor[J]. Bulletin of JSME, 1973, l6(91):54-68.
[3] BENSON R S, UCER A S. Some recent research in gas dynamic modeling of multiple single stage reciprocating compressor systems[C]//Papers of the International Compressor Engineering Conference. West Lafayette, Indiana:Purdue University Press, 1972:491-498.
[4] TORNABENE F, MARZANI A, VIOLA E, et al. Critical flow speeds of pipes conveying fluid by the generalized differential quadrature method[J]. Journal of Theoretical and Applied Mechanics, 2010, 3(3):121-138.
[5] RITTO T G, SOIZE C, ROCHINHA F A, et al. Dynamic stability of a pipe conveying fluid with an uncertain computational model[J]. Journal of Fluids and Structures, 2014, 49:412-426.
[6] TUBALDI E, AMABILI M, PAIDOUSSIS M P. Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow[J]. Journal of Sound and Vibration, 2016, 371:252-276.
[7] 杨大伟, 谢敬华, 田科. 流固耦合效应对输液管道的振动影响研究[J]. 现代制造工程, 2010, 8:144-148. YANG D W, XIE J H, TIAN K. Effect of the fluid structure interaction for fluid pipeline impact and study[J]. Modern Manufacturing Engineering, 2010, 8:144-148(in Chinese).
[8] 王海林, 张农, Cao Di. 充液管道与支撑系统的耦合振动分析[J].机械科学与技术, 2013, 32(12):1825-1828. WANG H L, ZHANG N, CAO D. Coupled vibration of liquid-filled pipe and support structure system[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(12):1825-1828(in Chinese).
[9] 陆春月, 寇子明, 吴娟, 等. 以管路为振动输出源的液压激振系统研究[J]. 液压与气动, 2013(2):32-34. LU C Y, KOU Z M, WU J, et al. Research on the hydraulic vibration system with the vibration output source of pipe[J]. Chinese Hydraulics & Pneumatics, 2013(2):32-34(in Chinese).
[10] HUANG Y M, GE S, WU W, et al. A direct method of natural frequency analysis on pipeline conveying fluid with both ends supported[J].Nu-clear Engineering & Design, 2012, 253(12):12-22.
[11] WANG L, GAN J, NI Q. Natural frequency analysis of fluid-conveying pipes in the ADINA system[J]. Journal of Physics Conference, 2013, 448(1):12014-12020(7).
[12] 沈旻昊. 飞机液压管路的简化建模及振动特性分析[D]. 西安:西安电子科技大学, 2014. SHEN M H. Simplified modeling and vibration analysis of the aircraft hydraulic pipeline[D]. Xi'an:Xidian University, 2014(in Chinese).
[13] 韩晓辉. 飞机液压管路的振动特性分析与共振疲劳试验研究[D]. 西安:西安电子科技大学, 2014. HAN X H. Vibration analysis and resonance fatigue test of the aircraft hydraulic pipeline[D]. Xi'an:Xidian University, 2014(in Chinese).
[14] 李帅军, 李华峰, 王小峰, 等. 任意分支管路流固耦合振动计算方法[J]. 振动与冲击, 2018, 37(7):52-55. LI S J, LI H F, WANG X F, et al. Vibration calculation method of multi-branched pipes with fluid-structure interaction[J]. Journal of Vibration and Shock, 2018, 37(7):52-55(in Chinese).
[15] 安晨亮, 马金玉, 王阔强. 流体压力对液压管路流固耦合振动特性的影响研究[J]. 机电工程, 2018, 35(11):36-38. AN C L, MA J Y, WANG K Q. Influence of fluid pressure on the fluid-solid coupling vibration characteristics of pipeline[J]. Mechanical & Electrical Engineering Magazine, 2018, 35(11):36-38(in Chinese).
[16] 郑勇.飞机液压管路维护[J]. 航空维修与工程, 2003(6):28-31. ZHENG Y. Aircraft hydraulic pipeline maintenance[J]. Aviation Maintenance and Engineering, 2003(6):28-31(in Chinese).
[17] 中国东方航空股份有限公司.中国东方航空A320飞机维护手册[M]. 2012:162-188. China Eastern Airlines. A320 aircraft maintenance manual of Chinese Eastern Airlines[M]. 2012:162-188(in Chinese).
[18] 岳英俊.飞机装配工艺液压系统的无缝压接技术应用[J]. 科技创新导报, 2011(19):85-86. YUE Y J. Application of seamless crimping technology in aircraft assembly process Hydraulic System[J]. Science and Technology Innovation Herald, 2011(19):85-86(in Chinese).
[19] 李春润,杨志总,张田利,等.油气田集输管道压接接头与钢管等强力学计算与分析[J].石油工程建设,2007,33(1):54-57. LI C R, YANG Z Z, ZAHGN T L, et al. Strength mechanical calculation and analysis of pressure joint and pipe of gathering pipeline in oil and gas field[J].Petroleum Engineering Construction,2007,33(1):54-57(in Chinese).
[20] 杜来林, 宋晓军.飞机附件检修[M]. 北京:航空工业出版社, 2006. DU L L, SONG X J. Aircraft accessories maintenance[M]. Beijing:Aviation Industry Press, 2006(in Chinese).